Suppr超能文献

通过使用线性等值、核等值、项目反应理论和机器学习方法使儿童行为检查表(CBCL)和优势与困难问卷(SDQ)中多动症得分相协调。

Harmonizing the CBCL and SDQ ADHD scores by using linear equating, kernel equating, item response theory and machine learning methods.

作者信息

Jović Miljan, Haeri Maryam Amir, Whitehouse Andrew, van den Berg Stéphanie M

机构信息

Department of Learning, Data Analytics and Technology, University of Twente, Enschede, Netherlands.

Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.

出版信息

Front Psychol. 2024 Jul 10;15:1345406. doi: 10.3389/fpsyg.2024.1345406. eCollection 2024.

Abstract

INTRODUCTION

A problem that applied researchers and practitioners often face is the fact that different institutions within research consortia use different scales to evaluate the same construct which makes comparison of the results and pooling challenging. In order to meaningfully pool and compare the scores, the scales should be harmonized. The aim of this paper is to use different test equating methods to harmonize the ADHD scores from Child Behavior Checklist (CBCL) and Strengths and Difficulties Questionnaire (SDQ) and to see which method leads to the result.

METHODS

Sample consists of 1551 parent reports of children aged 10-11.5 years from Raine study on both CBCL and SDQ (common persons design). We used linear equating, kernel equating, Item Response Theory (IRT), and the following machine learning methods: regression (linear and ordinal), random forest (regression and classification) and Support Vector Machine (regression and classification). Efficacy of the methods is operationalized in terms of the root-mean-square error (RMSE) of differences between predicted and observed scores in cross-validation.

RESULTS AND DISCUSSION

Results showed that with single group design, it is the best to use the methods that use item level information and that treat the outcome as interval measurement level (regression approach).

摘要

引言

应用研究人员和从业者经常面临的一个问题是,研究联盟中的不同机构使用不同的量表来评估同一构念,这使得结果的比较和汇总具有挑战性。为了有意义地汇总和比较分数,量表应该进行协调。本文的目的是使用不同的测验等值方法来协调儿童行为检查表(CBCL)和长处与困难问卷(SDQ)中的注意力缺陷多动障碍(ADHD)分数,并看看哪种方法能得出结果。

方法

样本包括来自雷恩研究的1551份10至11.5岁儿童的家长报告,涉及CBCL和SDQ(普通人设计)。我们使用了线性等值、核等值、项目反应理论(IRT),以及以下机器学习方法:回归(线性和有序)、随机森林(回归和分类)和支持向量机(回归和分类)。这些方法的有效性通过交叉验证中预测分数与观察分数之间差异的均方根误差(RMSE)来衡量。

结果与讨论

结果表明,在单组设计中,最好使用利用项目层面信息且将结果视为区间测量水平的方法(回归方法)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ac/11267626/fb5401d81c31/fpsyg-15-1345406-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验