Suppr超能文献

利用粪便图片的深度学习模型预测溃疡性结肠炎患者的内镜下黏膜炎症

Deep Learning Model Using Stool Pictures for Predicting Endoscopic Mucosal Inflammation in Patients With Ulcerative Colitis.

作者信息

Lee Jung Won, Woo Dongwon, Kim Kyeong Ok, Kim Eun Soo, Kim Sung Kook, Lee Hyun Seok, Kang Ben, Lee Yoo Jin, Kim Jeongseok, Jang Byung Ik, Kim Eun Young, Jo Hyeong Ho, Chung Yun Jin, Ryu Hanjun, Park Soo-Kyung, Park Dong-Il, Yu Hosang, Jeong Sungmoon

机构信息

Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea.

Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Korea.

出版信息

Am J Gastroenterol. 2025 Jan 1;120(1):213-224. doi: 10.14309/ajg.0000000000002978. Epub 2024 Jul 25.

Abstract

INTRODUCTION

Stool characteristics may change depending on the endoscopic activity of ulcerative colitis (UC). We developed a deep learning model using stool photographs of patients with UC (DLSUC) to predict endoscopic mucosal inflammation.

METHODS

This was a prospective multicenter study conducted in 6 tertiary referral hospitals. Patients scheduled to undergo endoscopy for mucosal inflammation monitoring were asked to take photographs of their stool using smartphones within 1 week before the day of endoscopy. DLSUC was developed using 2,161 stool pictures from 306 patients and tested on 1,047 stool images from 126 patients. The UC endoscopic index of severity was used to define endoscopic activity. The performance of DLSUC in endoscopic activity prediction was compared with that of fecal calprotectin (Fcal).

RESULTS

The area under the receiver operating characteristic curve (AUC) of DLSUC for predicting endoscopic activity was 0.801 (95% confidence interval [CI] 0.717-0.873), which was not statistically different from the AUC of Fcal (0.837 [95% CI, 0.767-0.899, DeLong P = 0.458]). When rectal-sparing cases (23/126, 18.2%) were excluded, the AUC of DLSUC increased to 0.849 (95% CI, 0.760-0.919). The accuracy, sensitivity, and specificity of DLSUC in predicting endoscopic activity were 0.746, 0.662, and 0.877 in all patients and 0.845, 0.745, and 0.958 in patients without rectal sparing, respectively. Active patients classified by DLSUC were more likely to experience disease relapse during a median 8-month follow-up (log-rank test, P = 0.002).

DISCUSSION

DLSUC demonstrated a good discriminating power similar to that of Fcal in predicting endoscopic activity with improved accuracy in patients without rectal sparing. This study implies that stool photographs are a useful monitoring tool for typical UC.

摘要

引言

粪便特征可能会根据溃疡性结肠炎(UC)的内镜活动情况而改变。我们开发了一种利用UC患者粪便照片的深度学习模型(DLSUC)来预测内镜下黏膜炎症。

方法

这是一项在6家三级转诊医院进行的前瞻性多中心研究。计划接受内镜检查以监测黏膜炎症的患者被要求在内镜检查前1周内使用智能手机拍摄粪便照片。DLSUC是利用306例患者的2161张粪便照片开发的,并在126例患者的1047张粪便图像上进行了测试。UC内镜严重程度指数用于定义内镜活动情况。将DLSUC在内镜活动预测中的表现与粪便钙卫蛋白(Fcal)的表现进行了比较。

结果

DLSUC预测内镜活动的受试者工作特征曲线下面积(AUC)为0.801(95%置信区间[CI]0.717 - 0.873),与Fcal的AUC(0.837[95%CI,0.767 - 0.899,德龙P = 0.458])无统计学差异。排除保留直肠的病例(23/126,18.2%)后,DLSUC的AUC增至0.849(95%CI,0.760 - 0.919)。DLSUC预测内镜活动的准确性、敏感性和特异性在所有患者中分别为0.746、0.662和0.877,在无直肠保留的患者中分别为0.845、0.745和0.958。在中位8个月的随访期间,DLSUC分类为活动期的患者更有可能经历疾病复发(对数秩检验,P = 0.002)。

讨论

DLSUC在预测内镜活动方面表现出与Fcal相似的良好鉴别能力,在无直肠保留的患者中准确性有所提高。这项研究表明,粪便照片是典型UC的一种有用的监测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa80/11676591/f6aed9881a99/acg-120-213-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验