文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宝藿苷 I 通过抑制凋亡细胞释放的细胞外囊泡/CXCL1 信号来增强乳腺癌对紫杉醇的化疗敏感性。

Baohuoside I chemosensitises breast cancer to paclitaxel by suppressing extracellular vesicle/CXCL1 signal released from apoptotic cells.

机构信息

State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

State Key Laboratory of Southwestern Chinese Medicine Resources, ChengduUniversity of Traditional Chinese Medicine, Chengdu, Sichuan, China.

出版信息

J Extracell Vesicles. 2024 Jul;13(7):e12493. doi: 10.1002/jev2.12493.


DOI:10.1002/jev2.12493
PMID:39051750
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11270583/
Abstract

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and chemotherapy is the cornerstone treatment for TNBC. Regrettably, emerging findings suggest that chemotherapy facilitates pro-metastatic changes in the tumour microenvironment. Extracellular vesicles (EVs) have been highly implicated in cancer drug resistance and metastasis. However, the effects of the EVs released from dying cancer cells on TNBC prognosis and corresponding therapeutic strategies have been poorly investigated. This study demonstrated that paclitaxel chemotherapy elicited CXCL1-enriched EVs from apoptotic TNBC cells (EV-Apo). EV-Apo promoted the chemoresistance and invasion of co-cultured TNBC cells by polarizing M2 macrophages through activating PD-L1 signalling. However, baohuoside I (BHS) remarkably sensitized the co-cultured TNBC cells to paclitaxel chemotherapy via modulating EV-Apo signalling. Mechanistically, BHS remarkably decreased C-X-C motif chemokine ligand 1 (CXCL1) cargo within EV-Apo and therefore attenuated macrophage M2 polarization by suppressing PD-L1 activation. Additionally, BHS decreased EV-Apo release by diminishing the biogenesis of intraluminal vesicles (ILVs) within multivesicular bodies (MVBs) of TNBC cells. Furthermore, BHS bound to the LEU104 residue of flotillin 2 (FLOT2) and interrupted its interaction with RAS oncogene family member 31 (RAB31), leading to the blockage of RAB31-FLOT2 complex-driven ILV biogenesis. Importantly, BHS remarkably chemosensitised paclitaxel to inhibit TNBC metastasis in vivo by suppressing EV-Apo-induced PD-L1 activation and M2 polarization of tumour-associated macrophages (TAMs). This pioneering study sheds light on EV-Apo as a novel therapeutic target to chemosensitise TNBC, and presents BHS as a promising chemotherapy adjuvant to improve TNBC chemosensitivity and prognosis by disturbing EV-Apo biogenesis.

摘要

三阴性乳腺癌(TNBC)是最具侵袭性的乳腺癌亚型,化疗是 TNBC 的基石治疗方法。遗憾的是,新出现的研究结果表明,化疗促进了肿瘤微环境中的促转移变化。细胞外囊泡(EVs)在癌症耐药性和转移中起着重要作用。然而,来自死亡癌细胞的 EVs 对 TNBC 预后的影响以及相应的治疗策略尚未得到充分研究。本研究表明,紫杉醇化疗从凋亡的 TNBC 细胞中诱导出富含 CXCL1 的 EVs(EV-Apo)。EV-Apo 通过激活 PD-L1 信号促进共培养的 TNBC 细胞的化疗耐药性和侵袭性,通过极化 M2 巨噬细胞。然而,宝藿苷 I(BHS)通过调节 EV-Apo 信号显著增强了共培养的 TNBC 细胞对紫杉醇化疗的敏感性。在机制上,BHS 通过降低 EV-Apo 中的 C-X-C 基序趋化因子配体 1(CXCL1)货物,显著抑制 PD-L1 激活,从而减弱巨噬细胞 M2 极化。此外,BHS 通过减少 TNBC 细胞多泡体(MVBs)腔内小泡(ILVs)的生物发生来减少 EV-Apo 的释放。此外,BHS 结合到绒毛蛋白 2(FLOT2)的 LEU104 残基上并中断其与 RAS 癌基因家族成员 31(RAB31)的相互作用,导致阻断 RAB31-FLOT2 复合物驱动的 ILV 生物发生。重要的是,BHS 通过抑制 EV-Apo 诱导的肿瘤相关巨噬细胞(TAMs)中的 PD-L1 激活和 M2 极化,显著增强紫杉醇对 TNBC 转移的化疗敏感性。这项开创性的研究揭示了 EV-Apo 作为一种新的治疗靶点,通过干扰 EV-Apo 的生物发生来增强 TNBC 的化疗敏感性,并提出 BHS 作为一种有前途的化疗辅助剂,通过改善 TNBC 的化疗敏感性和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/e8ff5934d076/JEV2-13-e12493-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/093f04f089c0/JEV2-13-e12493-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/4cab7b4d1347/JEV2-13-e12493-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/9fd561164a8f/JEV2-13-e12493-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/557168371063/JEV2-13-e12493-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/f36b468461e0/JEV2-13-e12493-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/68f6b52cbb25/JEV2-13-e12493-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/ef876221605e/JEV2-13-e12493-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/325cfee4cd4c/JEV2-13-e12493-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/10225cbfaf95/JEV2-13-e12493-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/1dcac67f2f11/JEV2-13-e12493-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/e8ff5934d076/JEV2-13-e12493-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/093f04f089c0/JEV2-13-e12493-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/4cab7b4d1347/JEV2-13-e12493-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/9fd561164a8f/JEV2-13-e12493-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/557168371063/JEV2-13-e12493-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/f36b468461e0/JEV2-13-e12493-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/68f6b52cbb25/JEV2-13-e12493-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/ef876221605e/JEV2-13-e12493-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/325cfee4cd4c/JEV2-13-e12493-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/10225cbfaf95/JEV2-13-e12493-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/1dcac67f2f11/JEV2-13-e12493-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1d/11270583/e8ff5934d076/JEV2-13-e12493-g007.jpg

相似文献

[1]
Baohuoside I chemosensitises breast cancer to paclitaxel by suppressing extracellular vesicle/CXCL1 signal released from apoptotic cells.

J Extracell Vesicles. 2024-7

[2]
XIAOPI formula inhibits chemoresistance and metastasis of triple-negative breast cancer by suppressing extracellular vesicle/CXCL1-induced TAM/PD-L1 signaling.

Phytomedicine. 2024-12

[3]
Chemotherapy-elicited extracellular vesicle CXCL1 from dying cells promotes triple-negative breast cancer metastasis by activating TAM/PD-L1 signaling.

J Exp Clin Cancer Res. 2024-4-23

[4]
Baohuoside i suppresses breast cancer metastasis by downregulating the tumor-associated macrophages/C-X-C motif chemokine ligand 1 pathway.

Phytomedicine. 2020-9-2

[5]
Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10 / STAT3 / PD-L1 signaling pathways.

J Ethnopharmacol. 2021-6-28

[6]
M2 macrophages promote PD-L1 expression in triple-negative breast cancer via secreting CXCL1.

Pathol Res Pract. 2024-8

[7]
Tumor-associated macrophages/C-X-C motif chemokine ligand 1 promotes breast cancer autophagy-mediated chemoresistance via IGF1R/STAT3/HMGB1 signaling.

Cell Death Dis. 2024-10-11

[8]
Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy.

J Neuroimmune Pharmacol. 2020-9

[9]
CCAAT enhancer binding protein delta activates vesicle associated membrane protein 3 transcription to enhance chemoresistance and extracellular PD-L1 expression in triple-negative breast cancer.

J Exp Clin Cancer Res. 2024-4-16

[10]
Serum-derived extracellular vesicles from breast cancer patients contribute to differential regulation of T-cell-mediated immune-escape mechanisms in breast cancer subtypes.

Front Immunol. 2023

引用本文的文献

[1]
Targeting Resistance Pathways in Breast Cancer Through Precision Oncology: Nanotechnology and Immune Modulation Approaches.

Biomedicines. 2025-7-10

[2]
The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target.

Cancers (Basel). 2025-5-15

[3]
Curcumenol inhibits malignant progression and promotes ferroptosis via the SLC7A11/NF‑κB/TGF‑β pathway in triple‑negative breast cancer.

Int J Mol Med. 2025-7

[4]
Tumor-derived extracellular vesicles: key drivers of immunomodulation in breast cancer.

Front Immunol. 2025-3-4

本文引用的文献

[1]
Chemotherapy-elicited extracellular vesicle CXCL1 from dying cells promotes triple-negative breast cancer metastasis by activating TAM/PD-L1 signaling.

J Exp Clin Cancer Res. 2024-4-23

[2]
Baohuoside I inhibits resistance to cisplatin in ovarian cancer cells by suppressing autophagy via downregulating HIF-1α/ATG5 axis.

Mol Carcinog. 2023-10

[3]
Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer.

Int J Mol Sci. 2023-4-14

[4]
The role of extracellular vesicles in cancer.

Cell. 2023-4-13

[5]
Cefoselis enhances breast cancer chemosensitivity by directly targeting GRP78/LRP5 signalling of cancer stem cells.

Clin Transl Med. 2023-2

[6]
Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis.

Mol Cancer. 2023-1-9

[7]
Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.

J Hematol Oncol. 2022-12-8

[8]
Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation.

Nature. 2022-12

[9]
Therapeutic Nanocarriers Inhibit Chemotherapy-Induced Breast Cancer Metastasis.

Adv Sci (Weinh). 2022-11

[10]
T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles.

Nat Commun. 2022-6-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索