Suppr超能文献

在抑制析氧的情况下,调控双金属催化活性以实现塑料废物升级循环中的有机升级。

Manipulating Dual-Metal Catalytic Activities toward Organic Upgrading in Upcycling Plastic Wastes with Inhibited Oxygen Evolution.

作者信息

Xiong Dengke, He Xiaoyang, Liu Xuan, Zhang Kaiyan, Tu Zhentao, Wang Jianying, Sun Shi-Gang, Chen Zuofeng

机构信息

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

出版信息

ACS Nano. 2024 Jul 25. doi: 10.1021/acsnano.4c04219.

Abstract

Electrorefinery of polybutylene terephthalate (PBT) waste plastic, specifically conversion of a PBT-derived 1,4-butanediol (BDO) monomer into value-added succinate coupled with H production, emerges as an auspicious strategy to mitigate severe plastic pollution. Herein, we report the synthesis of Mn-doped NiNDA nanosheets (NDA: 2,6-naphthalenedicarboxylic acid), a metal-organic framework (MOF) through a ligand exchange method, and its utilization for electrocatalytic BDO oxidation to succinate. Interestingly, the transformation of doped layered-hydroxide (d-LH) precursors to MOF promotes BDO oxidation while hindering the competitive oxygen evolution reaction. Experimental and theoretical results indicate that the MOF has a higher affinity (i.e., alcoholophilic) for BDO than the d-LH, while Mn doping into NiNDA results in electron accumulation at Ni sites with an upward shift in the d-band center and convenient spin-dependent charge transfer, which are all beneficial for BDO oxidation. The as-constructed two-electrode membrane-electrode assembly (MEA) flow cell, by coupling BDO oxidation and hydrogen evolution reaction, attains an industrial current density of 1.5 A cm@1.82 V at 50 °C, corresponding to a specific energy consumption of 3.68 kWh/Nm H. This represents an energy saving of >25% for hydrogen production on an industrial scale compared to conventional water electrolysis (∼5 kWh/Nm H) in addition to the production of valuable chemicals.

摘要

聚对苯二甲酸丁二醇酯(PBT)废塑料的电精炼,特别是将PBT衍生的1,4-丁二醇(BDO)单体转化为增值琥珀酸盐并同时产氢,是减轻严重塑料污染的一种可行策略。在此,我们报道了通过配体交换法合成的锰掺杂的NiNDA纳米片(NDA:2,6-萘二甲酸),一种金属有机框架(MOF),及其用于电催化BDO氧化为琥珀酸盐的应用。有趣的是,掺杂层状氢氧化物(d-LH)前驱体向MOF的转变促进了BDO氧化,同时阻碍了竞争性析氧反应。实验和理论结果表明,MOF对BDO的亲和力(即亲醇性)高于d-LH,而锰掺杂到NiNDA中导致电子在镍位点积累,d带中心上移并有利于自旋相关的电荷转移,所有这些都有利于BDO氧化。所构建的双电极膜电极组件(MEA)流动电池,通过耦合BDO氧化和析氢反应,在50°C下于1.82 V时达到1.5 A cm的工业电流密度,对应于3.68 kWh/Nm H的特定能耗。与传统水电解(~5 kWh/Nm H)相比,这在工业规模制氢方面代表了>25%的节能,此外还生产了有价值的化学品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验