Zhou Chang-An, Ma Kui, Zhuang Zechao, Ran Meiling, Shu Guoqiang, Wang Chao, Song Lei, Zheng Lirong, Yue Hairong, Wang Dingsheng
Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
Department of Chemistry, Tsinghua University, Beijing 100084, China.
J Am Chem Soc. 2024 Aug 7;146(31):21453-21465. doi: 10.1021/jacs.4c04189. Epub 2024 Jul 25.
As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm in 1 M KOH. The excellent mass activity of 12.3 mA μg and specific activity of 32.0 mA cm at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO can simultaneously promote HO adsorption and activation, while the modification with Ru further optimizes H adsorption and HO dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.
作为最具前景的析氢反应(HER)电催化剂,基于铂(Pt)的催化剂在碱性介质中仍面临着动力学缓慢和成本高昂的问题。在此,我们通过优化Pt物种和金属氧化物异质界面的局部环境来加速碱性析氢动力学。碳纳米管上具有相邻MO(M = Sn和Ce)的高度分散的PtRu双金属簇(PtRu/CNT@MO)被证明是一种潜在的碱性HER电催化剂,在1 M KOH中,在100 mA cm时过电位仅为75 mV。在70 mV过电位下,其出色的质量活性为12.3 mA μg,比活性为32.0 mA cm,分别比商业Pt/C高56倍和64倍。实验和理论研究表明,Pt簇与MO之间的异质界面可以同时促进HO吸附和活化,而Ru的修饰进一步优化了H吸附和HO解离能垒。然后,加速的基元步骤之间的匹配动力学在碱性介质中实现了出色的产氢。这项工作为催化局部环境设计提供了新的见解,以同时优化基元步骤,从而获得理想的碱性HER性能。