IEEE Trans Image Process. 2024;33:4319-4333. doi: 10.1109/TIP.2024.3431451. Epub 2024 Jul 30.
Brain region-of-interest (ROI) segmentation with magnetic resonance (MR) images is a basic prerequisite step for brain analysis. The main problem with using deep learning for brain ROI segmentation is the lack of sufficient annotated data. To address this issue, in this paper, we propose a simple multi-atlas supervised contrastive learning framework (MAS-CL) for brain ROI segmentation with MR images in an end-to-end manner. Specifically, our MAS-CL framework mainly consists of two steps, including 1) a multi-atlas supervised contrastive learning method to learn the latent representation using a limited amount of voxel-level labeling brain MR images, and 2) brain ROI segmentation based on the pre-trained backbone using our MSA-CL method. Specifically, different from traditional contrastive learning, in our proposed method, we use multi-atlas supervised information to pre-train the backbone for learning the latent representation of input MR image, i.e., the correlation of each sample pair is defined by using the label maps of input MR image and atlas images. Then, we extend the pre-trained backbone to segment brain ROI with MR images. We perform our proposed MAS-CL framework with five segmentation methods on LONI-LPBA40, IXI, OASIS, ADNI, and CC359 datasets for brain ROI segmentation with MR images. Various experimental results suggested that our proposed MAS-CL framework can significantly improve the segmentation performance on these five datasets.
基于磁共振 (MR) 图像的脑感兴趣区 (ROI) 分割是脑分析的基本前提步骤。使用深度学习进行脑 ROI 分割的主要问题是缺乏足够的标注数据。针对这一问题,本文提出了一种简单的基于多图谱监督对比学习框架 (MAS-CL) 的方法,用于端到端的脑 ROI 分割。具体来说,我们的 MAS-CL 框架主要包括两个步骤,包括 1) 一种基于多图谱监督对比学习的方法,利用有限数量的体素级标注脑 MR 图像来学习潜在表示,以及 2) 基于我们的 MSA-CL 方法的预训练骨干网络进行脑 ROI 分割。具体来说,与传统的对比学习不同,在我们提出的方法中,我们使用多图谱监督信息来预训练骨干网络,以学习输入 MR 图像的潜在表示,即通过输入 MR 图像和图谱图像的标签图来定义每个样本对的相关性。然后,我们将预训练的骨干网络扩展到基于 MR 图像的脑 ROI 分割。我们在 LONI-LPBA40、IXI、OASIS、ADNI 和 CC359 数据集上使用五种分割方法对我们的 MAS-CL 框架进行了实验,以实现基于 MR 图像的脑 ROI 分割。各种实验结果表明,我们提出的 MAS-CL 框架可以显著提高这五个数据集的分割性能。