Suppr超能文献

减少磁共振成像中的标注负担:一种新的基于磁共振对比引导的对比学习方法用于图像分割。

Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.

机构信息

Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA.

Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA.

出版信息

Med Phys. 2024 Apr;51(4):2707-2720. doi: 10.1002/mp.16820. Epub 2023 Nov 13.

Abstract

BACKGROUND

Contrastive learning, a successful form of representational learning, has shown promising results in pretraining deep learning (DL) models for downstream tasks. When working with limited annotation data, as in medical image segmentation tasks, learning domain-specific local representations can further improve the performance of DL models.

PURPOSE

In this work, we extend the contrastive learning framework to utilize domain-specific contrast information from unlabeled Magnetic Resonance (MR) images to improve the performance of downstream MR image segmentation tasks in the presence of limited labeled data.

METHODS

The contrast in MR images is controlled by underlying tissue properties (e.g., T1 or T2) and image acquisition parameters. We hypothesize that learning to discriminate local representations based on underlying tissue properties should improve subsequent segmentation tasks on MR images. We propose a novel constrained contrastive learning (CCL) strategy that uses tissue-specific information via a constraint map to define positive and negative local neighborhoods for contrastive learning, embedding this information in the representational space during pretraining. For a given MR contrast image, the proposed strategy uses local signal characteristics (constraint map) across a set of related multi-contrast MR images as a surrogate for underlying tissue information. We demonstrate the utility of the approach for downstream: (1) multi-organ segmentation tasks in T2-weighted images where a DL model learns T2 information with constraint maps from a set of 2D multi-echo T2-weighted images (n = 101) and (2) tumor segmentation tasks in multi-parametric images from the public brain tumor segmentation (BraTS) (n = 80) dataset where DL models learn T1 and T2 information from multi-parametric BraTS images. Performance is evaluated on downstream multi-label segmentation tasks with limited data in (1) T2-weighted images of the abdomen from an in-house Radial-T2 (Train/Test = 30/20), (2) public Cartesian-T2 (Train/Test = 6/12) dataset, and (3) multi-parametric MR images from the public brain tumor segmentation dataset (BraTS) (Train/Test = 40/50). The performance of the proposed CCL strategy is compared to state-of-the-art self-supervised contrastive learning techniques. In each task, a model is also trained using all available labeled data for supervised baseline performance.

RESULTS

The proposed CCL strategy consistently yielded improved Dice scores, Precision, and Recall metrics, and reduced HD95 values across all segmentation tasks. We also observed performance comparable to the baseline with reduced annotation effort. The t-SNE visualization of features for T2-weighted images demonstrates its ability to embed T2 information in the representational space. On the BraTS dataset, we also observed that using an appropriate multi-contrast space to learn T1+T2, T1, or T2 information during pretraining further improved the performance of tumor segmentation tasks.

CONCLUSIONS

Learning to embed tissue-specific information that controls MR image contrast with the proposed constrained contrastive learning improved the performance of DL models on subsequent segmentation tasks compared to conventional self-supervised contrastive learning techniques. The use of such domain-specific local representations could help understand, improve performance, and mitigate the scarcity of labeled data in MR image segmentation tasks.

摘要

背景

对比学习是一种成功的表示学习形式,在对下游任务进行深度学习(DL)模型预训练方面显示出了很好的效果。当使用有限的标注数据时,如在医学图像分割任务中,学习特定于领域的局部表示可以进一步提高 DL 模型的性能。

目的

在这项工作中,我们扩展了对比学习框架,利用未标注磁共振(MR)图像中的特定于领域的对比信息,以在有限的标注数据情况下提高下游 MR 图像分割任务的性能。

方法

MR 图像中的对比度受潜在组织特性(例如 T1 或 T2)和图像采集参数的控制。我们假设基于潜在组织特性学习区分局部表示的能力应该会提高后续的 MR 图像分割任务的性能。我们提出了一种新的受限对比学习(CCL)策略,该策略使用组织特异性信息通过约束图为对比学习定义正和负局部邻域,在预训练期间将此信息嵌入表示空间中。对于给定的 MR 对比图像,所提出的策略使用来自一组相关多对比度 MR 图像的局部信号特征(约束图)作为潜在组织信息的替代。我们证明了该方法在下游任务中的应用价值:(1)T2 加权图像中的多器官分割任务,其中 DL 模型使用来自一组 2D 多回波 T2 加权图像(n=101)的约束图学习 T2 信息;(2)公共脑肿瘤分割(BraTS)数据集的多参数图像中的肿瘤分割任务,其中 DL 模型使用多参数 BraTS 图像学习 T1 和 T2 信息。在(1)内部径向-T2(训练/测试=30/20)、(2)公共笛卡尔-T2(训练/测试=6/12)数据集的腹部 T2 加权图像以及(3)公共脑肿瘤分割数据集(BraTS)(训练/测试=40/50)的有限数据的下游多标签分割任务中评估性能。将所提出的 CCL 策略的性能与最先进的自监督对比学习技术进行了比较。在每个任务中,还使用所有可用的标注数据训练模型以进行监督基准性能。

结果

在所提出的 CCL 策略中,在所有分割任务中,Dice 评分、精度和召回率的度量值均得到了提高,HD95 值也得到了降低。我们还观察到与使用较少标注数据的基线相比,性能相当。T2 加权图像的 t-SNE 特征可视化表明它能够将 T2 信息嵌入表示空间中。在 BraTS 数据集上,我们还观察到在预训练期间使用适当的多对比度空间来学习 T1+T2、T1 或 T2 信息,进一步提高了肿瘤分割任务的性能。

结论

与传统的自监督对比学习技术相比,使用所提出的受限对比学习来学习嵌入特定于组织的信息,以控制磁共振图像对比度,提高了 DL 模型在后续分割任务中的性能。这种特定于领域的局部表示的使用可以帮助理解、提高性能,并缓解磁共振图像分割任务中标记数据的稀缺性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验