Suppr超能文献

基于机器学习预测多发性硬化症的残疾进展:一项观察性、国际性、多中心研究。

Machine-learning-based prediction of disability progression in multiple sclerosis: An observational, international, multi-center study.

作者信息

De Brouwer Edward, Becker Thijs, Werthen-Brabants Lorin, Dewulf Pieter, Iliadis Dimitrios, Dekeyser Cathérine, Laureys Guy, Van Wijmeersch Bart, Popescu Veronica, Dhaene Tom, Deschrijver Dirk, Waegeman Willem, De Baets Bernard, Stock Michiel, Horakova Dana, Patti Francesco, Izquierdo Guillermo, Eichau Sara, Girard Marc, Prat Alexandre, Lugaresi Alessandra, Grammond Pierre, Kalincik Tomas, Alroughani Raed, Grand'Maison Francois, Skibina Olga, Terzi Murat, Lechner-Scott Jeannette, Gerlach Oliver, Khoury Samia J, Cartechini Elisabetta, Van Pesch Vincent, Sà Maria José, Weinstock-Guttman Bianca, Blanco Yolanda, Ampapa Radek, Spitaleri Daniele, Solaro Claudio, Maimone Davide, Soysal Aysun, Iuliano Gerardo, Gouider Riadh, Castillo-Triviño Tamara, Sánchez-Menoyo José Luis, Laureys Guy, van der Walt Anneke, Oh Jiwon, Aguera-Morales Eduardo, Altintas Ayse, Al-Asmi Abdullah, de Gans Koen, Fragoso Yara, Csepany Tunde, Hodgkinson Suzanne, Deri Norma, Al-Harbi Talal, Taylor Bruce, Gray Orla, Lalive Patrice, Rozsa Csilla, McGuigan Chris, Kermode Allan, Sempere Angel Pérez, Mihaela Simu, Simo Magdolna, Hardy Todd, Decoo Danny, Hughes Stella, Grigoriadis Nikolaos, Sas Attila, Vella Norbert, Moreau Yves, Peeters Liesbet

机构信息

ESAT-STADIUS, KU Leuven, Belgium.

I-Biostat, Hasselt University, Belgium.

出版信息

PLOS Digit Health. 2024 Jul 25;3(7):e0000533. doi: 10.1371/journal.pdig.0000533. eCollection 2024 Jul.

Abstract

BACKGROUND

Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking.

METHODS

Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS.

FINDINGS

Machine learning models achieved a ROC-AUC of 0⋅71 ± 0⋅01, an AUC-PR of 0⋅26 ± 0⋅02, a Brier score of 0⋅1 ± 0⋅01 and an expected calibration error of 0⋅07 ± 0⋅04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history.

CONCLUSIONS

Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.

摘要

背景

残疾进展是多发性硬化症患者(PwMS)疾病演变的关键里程碑。残疾进展概率的预测模型尚未达到临床应用所需的可信度水平。目前也缺乏评估多发性硬化症模型开发的通用基准。

方法

使用了来自146个多发性硬化症中心的成年PwMS的数据,这些中心分布在40个国家,由MSBase联盟收集,随访时间至少为三年。符合基本质量要求纳入标准的数据总共代表了15240名PwMS。进行了外部验证并重复五次以评估结果的显著性。遵循了个体预后或诊断透明报告(TRIPOD)指南。预测了两年后确认的残疾进展情况,确认窗口为六个月。仅使用常规收集的变量,如扩展残疾状态量表、治疗、复发信息和多发性硬化病程。为了了解残疾进展的概率,研究了最先进的机器学习模型。通过受试者操作特征曲线下面积(ROC-AUC)和精确召回率曲线下面积(AUC-PR)评估模型的辨别性能,并通过Brier分数和预期校准误差评估其校准情况。我们所有的预处理和模型代码都可在https://gitlab.com/edebrouwer/ms_benchmark上获取,这使得这项任务成为预测多发性硬化症残疾进展的理想基准。

结果

机器学习模型的ROC-AUC为0.71±0.01,AUC-PR为0.26±0.02,Brier分数为0.1±0.01,预期校准误差为0.07±0.04。残疾进展史被确定为比治疗或复发史更能预测未来的残疾进展。

结论

仅使用常规收集的变量,在外部验证集上实现了良好的辨别和校准性能。这表明机器学习模型可以可靠地告知临床医生未来进展的发生情况,并且对于临床影响研究已经成熟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a068/11271865/7a6bfcd983f3/pdig.0000533.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验