Suppr超能文献

教师判断准确性的心理测量元分析再检验。

Teachers' judgment accuracy: A replication check by psychometric meta-analysis.

机构信息

Research Methods, Assessment and iScience, Department of Psychology, University of Konstanz, Konstanz, Germany.

出版信息

PLoS One. 2024 Jul 25;19(7):e0307594. doi: 10.1371/journal.pone.0307594. eCollection 2024.

Abstract

Teachers' judgment accuracy is a core competency in their daily business. Due to its importance, several meta-analyses have estimated how accurately teachers judge students' academic achievements by measuring teachers' judgment accuracy (i.e., the correlation between teachers' judgments of students' academic abilities and students' scores on achievement tests). In our study, we considered previous meta-analyses and updated these databases and the analytic combination of data using a psychometric meta-analysis to explain variations in results across studies. Our results demonstrate the importance of considering aggregation and publication bias as well as correcting for the most important artifacts (e.g., sampling and measurement error), but also that most studies fail to report the data needed for conducting a meta-analysis according to current best practices. We find that previous reviews have underestimated teachers' judgment accuracy and overestimated the variance in estimates of teachers' judgment accuracy across studies because at least 10% of this variance may be associated with common artifacts. We conclude that ignoring artifacts, as in classical meta-analysis, may lead one to erroneously conclude that moderator variables, instead of artifacts, explain any variation. We describe how online data repositories could improve the scientific process and the potential for using psychometric meta-analysis to synthesize results and assess replicability.

摘要

教师的判断准确性是其日常工作的核心能力。由于其重要性,已经有几项荟萃分析通过衡量教师对学生学业成绩的判断准确性(即教师对学生学术能力的判断与学生在成就测试中的得分之间的相关性)来估计教师对学生学业成绩的判断有多准确。在我们的研究中,我们考虑了以前的荟萃分析,并使用心理测量荟萃分析更新了这些数据库和数据分析的组合,以解释研究之间结果的差异。我们的结果表明,考虑聚合和出版偏差以及纠正最重要的人为因素(例如抽样和测量误差)非常重要,但也表明大多数研究未能按照当前最佳实践报告进行荟萃分析所需的数据。我们发现,以前的综述低估了教师的判断准确性,并高估了研究之间教师判断准确性估计的差异,因为至少 10%的这种差异可能与常见的人为因素有关。我们得出结论,像经典荟萃分析那样忽略人为因素可能会导致错误地认为是调节变量而不是人为因素解释了任何变化。我们描述了在线数据存储库如何改善科学过程,以及使用心理测量荟萃分析综合结果和评估可重复性的潜力。

相似文献

1

本文引用的文献

1
Meta-analysis in a digitalized world: A step-by-step primer.在数字化世界中的荟萃分析:一步步入门指南。
Behav Res Methods. 2024 Oct;56(7):1-21. doi: 10.3758/s13428-024-02374-8. Epub 2024 Apr 4.
4
: An R Package for Psychometric Meta-Analysis.用于心理测量元分析的R软件包。
Appl Psychol Meas. 2019 Jul;43(5):415-416. doi: 10.1177/0146621618795933. Epub 2018 Sep 5.
8
Expectations for Replications: Are Yours Realistic?复制的期望:你的现实吗?
Perspect Psychol Sci. 2014 May;9(3):305-18. doi: 10.1177/1745691614528518.
10
Outlier and influence diagnostics for meta-analysis.元分析中的异常值和影响诊断。
Res Synth Methods. 2010 Apr;1(2):112-25. doi: 10.1002/jrsm.11. Epub 2010 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验