Suppr超能文献

活跃的界面鼓起促进了群体的自组装和生物膜的形成。

Active interface bulging in swarms promotes self-assembly and biofilm formation.

机构信息

Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People's Republic of China.

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.

出版信息

Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2322025121. doi: 10.1073/pnas.2322025121. Epub 2024 Jul 25.

Abstract

Microbial communities such as biofilms are commonly found at interfaces. However, it is unclear how the physical environment of interfaces may contribute to the development and behavior of surface-associated microbial communities. Combining multimode imaging, single-cell tracking, and numerical simulations, here, we found that activity-induced interface bulging promotes colony biofilm formation in swarms presumably via segregation and enrichment of sessile cells in the bulging area. Specifically, the diffusivity of passive particles is ~50% lower inside the bulging area than elsewhere, which enables a diffusion-trapping mechanism for self-assembly and may account for the enrichment of sessile cells. We also uncovered a quasilinear relation between cell speed and surface-packing density that underlies the process of active interface bulging. Guided by the speed-density relation, we demonstrated reversible formation of liquid bulges by manipulating the speed and local density of cells with light. Over the course of development, the active bulges turned into striped biofilm structures, which eventually give rise to a large-scale ridge pattern. Our findings reveal a unique physical mechanism of biofilm formation at air-solid interface, which is pertinent to engineering living materials and directed self-assembly in active fluids.

摘要

微生物群落,如生物膜,通常在界面处发现。然而,目前尚不清楚界面的物理环境如何促进表面相关微生物群落的发展和行为。通过结合多模成像、单细胞跟踪和数值模拟,我们发现活性诱导的界面凸起促进了群体生物膜的形成,推测是通过在凸起区域中分离和富集固着细胞。具体来说,凸起区域内的被动粒子扩散系数比其他区域低约 50%,这为自组装提供了一种扩散捕获机制,并可能解释了固着细胞的富集。我们还揭示了细胞速度和表面堆积密度之间的准线性关系,这是活性界面凸起过程的基础。根据速度-密度关系,我们通过用光操纵细胞的速度和局部密度,演示了液体凸起的可逆形成。在发展过程中,活性凸起变成了条纹状生物膜结构,最终导致大规模脊状图案的形成。我们的研究结果揭示了空气-固体界面处生物膜形成的独特物理机制,这与工程活材料和活性流体中的定向自组装有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f42b/11295035/aa3e34c70c1c/pnas.2322025121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验