Shen Qingbo, Chen Jiali, Jing Xu, Duan Chunying
School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
Adv Sci (Weinh). 2024 Sep;11(36):e2404293. doi: 10.1002/advs.202404293. Epub 2024 Jul 25.
Natural photosynthesis enzymes utilize energies of several photons for challenging oxidation of water, whereas artificial photo-catalysis typically involves only single-photon excitation. Herein, a multiphoton excitation strategy is reported that combines parallel photo-excitations with a photoinduced electron transfer process for the activation of C(sp)─H bonds, including methane. The metal-organic framework Fe-MOF is designed to consolidate 4,4',4″-nitrilotrisbenzoic units for the photoactivation of dioxygen and trinuclear iron clusters as the HAT precursor for photoactivating alkanes. Under visible light irradiation, the dyes and iron clusters absorbed parallel photons simultaneously to reach their excited states, respectively, generating O via energy transfer and chlorine radical via ligand-to-metal charge transfer. The further excitation of organic dyes leads to the reduction of O into O through a photoinduced electron transfer, guaranteeing an extra multiphoton oxygen activation manner. The chlorine radical abstracts a hydrogen atom from alkanes, generating the carbon radical for further oxidation transformation. Accordingly, the total oxidation conversion of alkane utilizing three photoexcitation processes combines the energies of more than two photons. This new platform synergistically combines a consecutive excited photoredox organic dye and a HAT catalyst to combine the energies of more than two photons, providing a promising multiphoton catalysis strategy under energy saving, and high efficiency.
天然光合作用酶利用多个光子的能量来实现具有挑战性的水氧化,而人工光催化通常只涉及单光子激发。在此,报道了一种多光子激发策略,该策略将平行光激发与光诱导电子转移过程相结合,用于活化包括甲烷在内的C(sp)─H键。金属有机框架Fe-MOF被设计用于整合4,4',4″-氮杂三苯甲酸单元以实现双氧的光活化,并将三核铁簇作为光活化烷烃的氢原子转移(HAT)前体。在可见光照射下,染料和铁簇同时吸收平行光子分别达到其激发态,通过能量转移产生单线态氧(¹O₂)并通过配体到金属的电荷转移产生氯自由基。有机染料的进一步激发通过光诱导电子转移将¹O₂还原为超氧阴离子(O₂⁻),保证了一种额外的多光子氧活化方式。氯自由基从烷烃中夺取一个氢原子,生成碳自由基以进行进一步的氧化转化。因此,利用三个光激发过程的烷烃总氧化转化结合了超过两个光子的能量。这个新平台协同结合了连续激发的光氧化还原有机染料和HAT催化剂,以结合超过两个光子的能量,在节能和高效的条件下提供了一种有前景的多光子催化策略。