Suppr超能文献

植被通过响应大气 CO2 的上升而迁移气候带,从而增加了全球气候脆弱性风险。

Vegetation increases global climate vulnerability risk by shifting climate zones in response to rising atmospheric CO.

机构信息

Joint International Research Laboratory of Catastrophe Simulation and Systemic Risk Governance, Beijing Normal University, Zhuhai 519087, China; School of National Safety and Emergency Management, Beijing Normal University, Zhuhai 519807, China.

State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Sci Total Environ. 2024 Nov 1;949:174810. doi: 10.1016/j.scitotenv.2024.174810. Epub 2024 Jul 23.

Abstract

Global climate zones are experiencing widespread shifts with ongoing rise in atmospheric CO, influencing vegetation growth and shifting its distributions to challenge ecosystem structure and function, posing threats on ecological and societal safety. However, how rising atmospheric CO affects the pace of global climate zone shifts is highly uncertain. More attentions are urgently required to understand the underlying mechanisms and quantifications of regional climate vulnerability in response to rising CO. In this study, we employ nine Earth system models from CMIP6 to investigate global climate zone shifts with rising CO, unravel the effects of vegetation physiological response (PHY), and categorize climate vulnerable regions depending on the extent of climate zone shifts. We find that climate zone shifts over half of the global land area, 16.8% of which is contributed by PHY at 4 × CO. Intriguingly, besides warming, PHY-induced precipitation changes and their interactions with warming dominate about two-fifths of PHY-forced shifts, providing potential direction for model improvement in future predictions of climate zone shifts. Aided with PHY effects, 4 × CO imposes substantial climate zone shifts over about one-fifth of the global land area, suggesting substantial changes in local climate and ecosystem structure and functions. Hence, those regions would experience strong climate vulnerability, and face high risk of climate extremes, water scarcity and food production. Our results quantitatively identify the vulnerable regions and unravel the underlying drivers, providing scientific insights to prioritize conservation and restoration efforts to ensure ecological and social safety globally.

摘要

全球气候带正经历着广泛的变化,大气中二氧化碳(CO)持续上升,影响植被生长并改变其分布,从而挑战生态系统结构和功能,对生态和社会安全构成威胁。然而,大气 CO 上升如何影响全球气候带变化的速度仍存在高度不确定性。迫切需要更多关注,以了解应对上升 CO 时区域气候脆弱性的潜在机制和量化方法。在这项研究中,我们利用 CMIP6 中的九个地球系统模型来研究大气 CO 上升引起的全球气候带变化,揭示植被生理响应(PHY)的影响,并根据气候带变化的程度对气候脆弱地区进行分类。我们发现,全球一半以上的陆地地区的气候带发生了变化,其中 16.8%是由 4×CO 下的 PHY 造成的。有趣的是,除了变暖之外,PHY 引起的降水变化及其与变暖的相互作用,主导了约五分之二的 PHY 强迫变化,为未来气候带变化预测模型的改进提供了潜在的方向。在 PHY 效应的辅助下,4×CO 导致全球约五分之一的陆地地区发生了大量的气候带变化,这表明当地气候和生态系统结构和功能将发生重大变化。因此,这些地区将面临强烈的气候脆弱性,面临极端气候、水资源短缺和粮食生产等方面的高风险。我们的研究结果定量地确定了脆弱地区,并揭示了潜在的驱动因素,为优先开展保护和恢复工作提供了科学依据,以确保全球生态和社会安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验