Swann Abigail L S, Hoffman Forrest M, Koven Charles D, Randerson James T
Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195; Department of Biology, University of Washington, Seattle, WA 98195;
Computer Science & Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831;
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10019-24. doi: 10.1073/pnas.1604581113. Epub 2016 Aug 29.
Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.
大气中二氧化碳浓度上升会使地球变暖,许多研究推断这种变暖将导致干旱更加普遍和严重。然而,大气中二氧化碳浓度上升也会改变气孔导度和植物水分利用情况,而这些过程在影响分析中常常被忽视。我们发现,植物对二氧化碳的生理反应会降低对未来干旱胁迫的预测,并且通过使用地球系统模型(ESMs)中以植物为中心而非以大气为中心的指标可以体现这种降低。以大气为中心的帕尔默干旱严重指数预测,全球超过70%的陆地面积未来干旱胁迫会增加。使用降水减去蒸散量(P-E)这一指标时,该面积降至37%,P-E代表下游生态系统和人类可利用的水通量。在降水减少更为显著的地区(北美南部、南美东北部和欧洲南部),这两个指标对胁迫增加的估计是一致的。在其他地区,这两个指标的估计结果存在差异,P-E预测温带亚洲和非洲中部的胁迫会减少。干旱指标对二氧化碳增加的辐射和生理方面的不同敏感性,部分解释了近期研究中对未来干旱的不同估计。此外,在离线模型中使用ESM输出可能会使植物对相对湿度和其他地表变量的反馈被重复计算,从而导致对未来胁迫的高估。需要使用考虑植物蒸腾作用对二氧化碳变化响应的干旱指标,包括直接使用ESM中的P-E和土壤湿度,以减少未来评估中的不确定性。