Suppr超能文献

Reframing microplastics as a ligand for metals reveals that water quality characteristics govern the association of cadmium to polyethylene.

作者信息

Zink Lauren, Mertens Emily, Zhou Xingzi, Johnston Sarah Ellen, Bogard Matthew, Wiseman Steve, Pyle Gregory G

机构信息

University of Lethbridge, Lethbridge, Alberta, Canada.

University of Lethbridge, Lethbridge, Alberta, Canada.

出版信息

Sci Total Environ. 2024 Oct 20;948:174659. doi: 10.1016/j.scitotenv.2024.174659. Epub 2024 Jul 23.

Abstract

Environmental characteristics including water quality and sediment properties alter the hazard that metals pose to aquatic systems by governing the speciation and partitioning of metals between water, sediment, and biotic ligands; however, alternate ligands are being introduced into aquatic systems through anthropogenic activity. Microplastics are a ligand on which metals interact through adsorption to the plastic surface. It remains unknown what factors determine the amount of metal bound to microplastic. Using a combination of laboratory experiments and machine learning, we tested a suite of eighteen environmental parameters (inclusive of both water and sediment) to understand how they influence association of cadmium to a representative microplastic, polyethylene. From this, we developed and tested a predictive model that outlines the characteristics that favour the association of cadmium to microplastic. Alkalinity, humification index of dissolved organic matter, and pH (all of which are water quality characteristics) were the three factors determining the proportion of cadmium adsorbed to plastics. These results align with other predictive models, such as the Biotic Ligand Model in demonstrating the governance of metal behaviour by water quality characteristics. To assess the relationship of the amount of cadmium bound to microplastic and cadmium uptake, an exposure was completed in which fathead minnows (Pimephales promelas) were acclimated to environments representing each of the potential outcomes of the model. The uptake of cadmium was not significantly different between groups, indicating that the stress of alterations to water quality may be a confounding factor in determining the exposure risk of microplastics and cadmium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验