Sretavan Karianne, Braun Henry, Liu Zoe, Bullock Daniel, Palnitkar Tara, Patriat Remi, Chandrasekaran Jayashree, Brenny Samuel, Johnson Matthew D, Widge Alik S, Harel Noam, Heilbronner Sarah R
Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota.
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Dec;9(12):1249-1261. doi: 10.1016/j.bpsc.2024.07.008. Epub 2024 Jul 23.
The anterior limb of the internal capsule (ALIC) is a white matter structure that connects the prefrontal cortex (PFC) to the brainstem, thalamus, and subthalamic nucleus. It is a target for deep brain stimulation for obsessive-compulsive disorder. There is strong interest in improving deep brain stimulation targeting by using diffusion tractography to reconstruct and target specific ALIC fiber pathways, but this methodology is susceptible to errors and lacks validation. To address these limitations, we developed a novel diffusion tractography pipeline that generates reliable and biologically validated ALIC white matter reconstructions.
Following algorithm development and refinement, we analyzed 43 control participants, each with 2 sets of 3T magnetic resonance imaging data and a subset of 5 control participants with 7T data from the Human Connectome Project. We generated 22 segmented ALIC fiber bundles (11 per hemisphere) based on PFC regions of interest, and we analyzed the relationships among bundles.
We successfully reproduced the topographies established by previous anatomical work using images acquired at both 3T and 7T. Quantitative assessment demonstrated significantly smaller intraparticipant variability than interparticipant variability for both test and retest groups across all but one PFC region. We examined the overlap between fibers from different PFC regions and a response tract for obsessive-compulsive disorder deep brain stimulation, and we reconstructed the PFC hyperdirect pathway using a modified version of our pipeline.
Our diffusion magnetic resonance imaging algorithm reliably generates biologically validated ALIC white matter reconstructions, thereby allowing for more precise modeling of fibers for neuromodulation therapies.
内囊前肢(ALIC)是一种白质结构,连接前额叶皮质(PFC)与脑干、丘脑和丘脑底核。它是强迫症深部脑刺激的靶点。人们对利用扩散张量成像来重建和靶向特定的ALIC纤维通路以改善深部脑刺激靶点很感兴趣,但这种方法容易出错且缺乏验证。为了解决这些局限性,我们开发了一种新型的扩散张量成像流程,可生成可靠且经过生物学验证的ALIC白质重建。
在算法开发和优化之后,我们分析了43名对照参与者,每人有两组3T磁共振成像数据,以及来自人类连接组计划的5名对照参与者的7T数据子集。我们基于PFC感兴趣区域生成了22个分割的ALIC纤维束(每个半球11个),并分析了各束之间的关系。
我们使用在3T和7T采集的图像成功再现了先前解剖学研究确立的拓扑结构。定量评估表明,除一个PFC区域外,所有测试组和复测组的参与者内变异性均显著小于参与者间变异性。我们检查了来自不同PFC区域的纤维与强迫症深部脑刺激反应束之间的重叠,并使用我们流程的改进版本重建了PFC超直接通路。
我们的扩散磁共振成像算法可靠地生成经过生物学验证的ALIC白质重建,从而允许对神经调节治疗的纤维进行更精确的建模。