Pasca Francesco, Gelato Yuri, Andresini Michael, Romanazzi Giuseppe, Degennaro Leonardo, Colella Marco, Luisi Renzo
Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
DICATECh Politecnico di Bari Via E. Orabona 4 Bari 70125 Italy.
Chem Sci. 2024 Jun 13;15(29):11337-11346. doi: 10.1039/d4sc02696a. eCollection 2024 Jul 24.
Naturally occurring and readily available α-hydroxy carboxylic acids (AHAs) are utilized as platforms for visible light-mediated oxidative CO-extrusion furnishing α-hydroxy radicals proved to be versatile C1 to C hydroxyalkylating agents. The direct decarboxylative Giese reaction (DDGR) is operationally simple, not requiring activator or sacrificial oxidants, and enables the synthesis of a diverse range of hydroxylated products, introducing connectivity typically precluded from conventional polar domains. Notably, the methodology has been extended to widely used glycolic acid resulting in a highly efficient and unprecedented C1 hydroxyhomologation tactic. The use of flow technology further facilitates scalability and adds green credentials to this synthetic methodology.
天然存在且易于获得的α-羟基羧酸(AHAs)被用作可见光介导的氧化脱羧反应的平台,该反应能提供α-羟基自由基,已被证明是通用的C1到C羟烷基化试剂。直接脱羧吉泽反应(DDGR)操作简单,无需活化剂或牺牲性氧化剂,能够合成多种羟基化产物,引入了传统极性反应难以实现的连接方式。值得注意的是,该方法已扩展到广泛使用的乙醇酸,从而产生了一种高效且前所未有的C1羟基同系化策略。流动技术的使用进一步促进了可扩展性,并为这种合成方法增添了绿色化学特征。