文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FeO 涂层 CNTs-阿拉伯胶纳米杂化复合材料通过 ROS 介导的信号转导增强抗白血病活性,针对 AML 细胞。

FeO-Coated CNTs-Gum Arabic Nano-Hybrid Composites Exhibit Enhanced Anti-Leukemia Potency Against AML Cells via ROS-Mediated Signaling.

机构信息

Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Kingdom of Saudi Arabia.

出版信息

Int J Nanomedicine. 2024 Jul 19;19:7323-7352. doi: 10.2147/IJN.S467733. eCollection 2024.


DOI:10.2147/IJN.S467733
PMID:39055376
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11269411/
Abstract

BACKGROUND: Prior studies on magnetite (FeO) NPs and carbon nanotubes (CNTs) cytotoxic effects against acute myeloid leukemia (AML) are inconclusive rather than definitive. PURPOSE: Investigation of the effects of Gum Arabic (GA)-stabilized/destabilized FeO NPs and CNTs, alone or in combination, on AML cell proliferation. METHODS: Hybrid NPs were synthesized, characterized, and assessed for their cytotoxicity against Kasumi-1, HL-60, and THP-1 in comparison to normal primary bone marrow CD34 cells. The molecular pathways of nanostructures' cytotoxicity were also investigated. RESULTS: The FeO NPs were effectively synthesized and attached to the surface of the CNTs, resulting in the formation of a novel hybrid through their interaction with the GA colloidal solution in an aqueous media. Although the evaluated nanostructured nanoparticles had significant growth suppression ability against the leukemia cell lines, with IC values ranging from 42.437 to 189.842 μg/mL, they exhibited comparatively modest toxicity towards normal hematopoietic cells (IC: 113.529‒162.656 μg/mL). The incorporation of FeO NPs with CNTs in a hybrid nanocomposite significantly improved their effectiveness against leukemia cells, with the extent of improvement varying depending on the specific cell type. The nanostructured particles were stabilized by GA, which enhances their ability to inhibit cell proliferation in a manner that depends on the specific cell type. Also, nanoparticles exhibit cytotoxicity due to their capacity to stimulate the production of intracellular ROS, halt the cell cycle at the G1 phase, and induce apoptosis. This is supported by the activation of p53, BAX, cytochrome C, and caspase-3, which are triggered by ROS. The nanostructures lead to an increase in the expression of genes encoding proteins related to oxidative stress (SIRT1, FOXO3, NFE2L2, and MAP3K5) and cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in response to ROS. CONCLUSION: We provide an effective FeO NPs/CNTs nano-hybrid composite that induces apoptosis and has strong anti-leukemic capabilities. This hybrid nanocomposite is promising for in vivo testing and validation.

摘要

背景:先前关于磁铁矿(FeO)纳米粒子和碳纳米管(CNT)对急性髓系白血病(AML)的细胞毒性作用的研究结果并不明确。

目的:研究阿拉伯树胶(GA)稳定/不稳定的 FeO 纳米粒子和 CNT 单独或联合使用对 AML 细胞增殖的影响。

方法:合成了杂化纳米粒子,对其进行了表征,并与正常原代骨髓 CD34 细胞进行了比较,评估了它们对 Kasumi-1、HL-60 和 THP-1 的细胞毒性。还研究了纳米结构细胞毒性的分子途径。

结果:成功合成了 FeO 纳米粒子,并将其附着在 CNT 的表面上,通过在水介质中与 GA 胶体溶液相互作用,形成了一种新型的杂化纳米粒子。虽然评估的纳米结构纳米粒子对白血病细胞系具有显著的生长抑制能力,其 IC 值范围为 42.437 至 189.842 μg/mL,但它们对正常造血细胞的毒性相对较小(IC:113.529 至 162.656 μg/mL)。将 FeO 纳米粒子与 CNT 结合在杂化纳米复合材料中,显著提高了它们对白血病细胞的作用,其增强程度取决于特定的细胞类型。GA 稳定了纳米结构颗粒,增强了它们抑制细胞增殖的能力,这种能力取决于特定的细胞类型。此外,纳米颗粒还通过刺激细胞内 ROS 的产生、使细胞周期停滞在 G1 期并诱导细胞凋亡来发挥细胞毒性作用。这得到了 ROS 触发的 p53、BAX、细胞色素 C 和 caspase-3 的激活的支持。纳米结构导致与氧化应激相关的蛋白质(SIRT1、FOXO3、NFE2L2 和 MAP3K5)和细胞周期蛋白依赖性激酶抑制剂(CDKN1A 和 CDKN1B)的编码基因表达增加,以响应 ROS。

结论:我们提供了一种有效的 FeO NPs/CNTs 纳米杂化复合材料,它能诱导细胞凋亡并具有强大的抗白血病能力。这种杂化纳米复合材料有望进行体内测试和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/790ad3b459a5/IJN-19-7323-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/7289042f1f62/IJN-19-7323-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/52e52e74d454/IJN-19-7323-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/ae0d97788bd2/IJN-19-7323-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/db8a9fcee3c8/IJN-19-7323-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/0823b9d10edb/IJN-19-7323-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/aad6b0e5be25/IJN-19-7323-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/57a8ed46c02a/IJN-19-7323-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/511f876df80d/IJN-19-7323-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/909f626a0fdb/IJN-19-7323-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/142e86f23f15/IJN-19-7323-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/3c25ce561bb8/IJN-19-7323-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/4ba9b6454eb9/IJN-19-7323-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/4e2a62373125/IJN-19-7323-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/3227f393887b/IJN-19-7323-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/790ad3b459a5/IJN-19-7323-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/7289042f1f62/IJN-19-7323-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/52e52e74d454/IJN-19-7323-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/ae0d97788bd2/IJN-19-7323-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/db8a9fcee3c8/IJN-19-7323-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/0823b9d10edb/IJN-19-7323-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/aad6b0e5be25/IJN-19-7323-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/57a8ed46c02a/IJN-19-7323-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/511f876df80d/IJN-19-7323-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/909f626a0fdb/IJN-19-7323-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/142e86f23f15/IJN-19-7323-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/3c25ce561bb8/IJN-19-7323-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/4ba9b6454eb9/IJN-19-7323-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/4e2a62373125/IJN-19-7323-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/3227f393887b/IJN-19-7323-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc2/11269411/790ad3b459a5/IJN-19-7323-g0015.jpg

相似文献

[1]
FeO-Coated CNTs-Gum Arabic Nano-Hybrid Composites Exhibit Enhanced Anti-Leukemia Potency Against AML Cells via ROS-Mediated Signaling.

Int J Nanomedicine. 2024

[2]
ZnO/CNT@FeO induces ROS-mediated apoptosis in chronic myeloid leukemia (CML) cells: an emerging prospective for nanoparticles in leukemia treatment.

Artif Cells Nanomed Biotechnol. 2020-12

[3]
Azelaic Acid Exerts Antileukemia Effects against Acute Myeloid Leukemia by Regulating the Prdxs/ROS Signaling Pathway.

Oxid Med Cell Longev. 2020

[4]
Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species.

Int J Nanomedicine. 2021

[5]
OSU-A9, an indole-3-carbinol derivative, induces cytotoxicity in acute myeloid leukemia through reactive oxygen species-mediated apoptosis.

Biochem Pharmacol. 2013-9-13

[6]
Radotinib inhibits acute myeloid leukemia cell proliferation via induction of mitochondrial-dependent apoptosis and CDK inhibitors.

Eur J Pharmacol. 2016-10-15

[7]
Radotinib enhances cytarabine (Ara-C)-induced acute myeloid leukemia cell death.

BMC Cancer. 2020-12-4

[8]
Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells.

J Transl Med. 2011-5-19

[9]
Ethyl acetate extract of Caesalpinia sappan L. inhibited acute myeloid leukemia via ROS-mediated apoptosis and differentiation.

Phytomedicine. 2019-12-4

[10]
Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells.

Int J Mol Sci. 2020-1-9

引用本文的文献

[1]
Critical Evaluation of Combined Cu and FeO Nanodots with Gum Arabic Nano-Hybrids Using in-vitro Model: Flow Cytometry and Cell Viability Studies.

Int J Nanomedicine. 2025-3-3

[2]
A reactive oxygen species-related signature predicts the prognosis and immunosuppressive microenvironment in gliomas.

Redox Rep. 2024-12

本文引用的文献

[1]
Nanotechnological advances in cancer: therapy a comprehensive review of carbon nanotube applications.

Front Bioeng Biotechnol. 2024-3-6

[2]
Application of carbon nanostructures in biomedicine: realities, difficulties, prospects.

Nanotoxicology. 2024-3

[3]
Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges.

J Drug Target. 2024-12

[4]
Recent trends in preparation and biomedical applications of iron oxide nanoparticles.

J Nanobiotechnology. 2024-1-8

[5]
Acute myeloid leukaemia.

Lancet. 2023-6-17

[6]
Application of iron oxide nanoparticles in the diagnosis and treatment of leukemia.

Front Pharmacol. 2023-3-30

[7]
Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments.

Nanomaterials (Basel). 2023-3-22

[8]
Cancer nanomedicine: a review of nano-therapeutics and challenges ahead.

RSC Adv. 2023-3-14

[9]
Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications.

Materials (Basel). 2022-12-21

[10]
Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management.

Am J Hematol. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索