Suppr超能文献

基于进化转移优化的脑电信号自动发作期模式识别方法

Evolutionary transfer optimization-based approach for automated ictal pattern recognition using brain signals.

作者信息

Swami Piyush, Maheshwari Jyoti, Kumar Mohit, Bhatia Manvir

机构信息

Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.

Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.

出版信息

Front Hum Neurosci. 2024 Jul 11;18:1386168. doi: 10.3389/fnhum.2024.1386168. eCollection 2024.

Abstract

The visual scrutinization process for detecting epileptic seizures (ictal patterns) is time-consuming and prone to manual errors, which can have serious consequences, including drug abuse and life-threatening situations. To address these challenges, expert systems for automated detection of ictal patterns have been developed, yet feature engineering remains problematic due to variability within and between subjects. Single-objective optimization approaches yield less reliable results. This study proposes a novel expert system using the non-dominated sorting genetic algorithm (NSGA)-II to detect ictal patterns in brain signals. Employing an evolutionary multi-objective optimization (EMO) approach, the classifier minimizes both the number of features and the error rate simultaneously. Input features include statistical features derived from phase space transformations, singular values, and energy values of time-frequency domain wavelet packet transform coefficients. Through evolutionary transfer optimization (ETO), the optimal feature set is determined from training datasets and passed through a generalized regression neural network (GRNN) model for pattern detection of testing datasets. The results demonstrate high accuracy with minimal computation time (<0.5 s), and EMO reduces the feature set matrix by more than half, suggesting reliability for clinical applications. In conclusion, the proposed model offers promising advancements in automating ictal pattern recognition in EEG data, with potential implications for improving epilepsy diagnosis and treatment. Further research is warranted to validate its performance across diverse datasets and investigate potential limitations.

摘要

用于检测癫痫发作(发作期模式)的视觉检查过程既耗时又容易出现人为错误,这可能会导致严重后果,包括药物滥用和危及生命的情况。为应对这些挑战,已经开发了用于自动检测发作期模式的专家系统,然而由于个体内部和个体之间的变异性,特征工程仍然存在问题。单目标优化方法产生的结果不太可靠。本研究提出了一种使用非支配排序遗传算法(NSGA)-II来检测脑电信号中发作期模式的新型专家系统。采用进化多目标优化(EMO)方法,分类器同时将特征数量和错误率降至最低。输入特征包括从相空间变换、奇异值以及时频域小波包变换系数的能量值导出的统计特征。通过进化转移优化(ETO),从训练数据集中确定最优特征集,并将其通过广义回归神经网络(GRNN)模型用于测试数据集的模式检测。结果表明该方法在最短计算时间(<0.5秒)内具有高精度,并且EMO将特征集矩阵减少了一半以上,表明其在临床应用中的可靠性。总之,所提出的模型在脑电图数据中发作期模式识别自动化方面取得了有前景的进展,对改善癫痫诊断和治疗具有潜在意义。有必要进行进一步研究以验证其在不同数据集上的性能并调查潜在局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb7/11269234/bc0d5b6c3b65/fnhum-18-1386168-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验