Suppr超能文献

基于MRI和微小RNA的放射基因组学列线图预测肝细胞癌微血管侵犯

Radiogenomics nomogram based on MRI and microRNAs to predict microvascular invasion of hepatocellular carcinoma.

作者信息

Hu Guangchao, Qu Jianyi, Gao Jie, Chen Yuqian, Wang Fang, Zhang Haicheng, Zhang Han, Wang Xuefeng, Ma Heng, Xie Haizhu, Xu Cong, Li Naixuan, Zhang Qianqian

机构信息

Department of Radiology, Qingdao Municipal Hospital, Qingdao, Shandong, China.

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Front Oncol. 2024 Jul 11;14:1371432. doi: 10.3389/fonc.2024.1371432. eCollection 2024.

Abstract

PURPOSE

This study aimed to develop and validate a radiogenomics nomogram for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) on the basis of MRI and microRNAs (miRNAs).

MATERIALS AND METHODS

This cohort study included 168 patients (training cohort: n = 116; validation cohort: n = 52) with pathologically confirmed HCC, who underwent preoperative MRI and plasma miRNA examination. Univariate and multivariate logistic regressions were used to identify independent risk factors associated with MVI. These risk factors were used to produce a nomogram. The performance of the nomogram was evaluated by receiver operating characteristic curve (ROC) analysis, sensitivity, specificity, accuracy, and F1-score. Decision curve analysis was performed to determine whether the nomogram was clinically useful.

RESULTS

The independent risk factors for MVI were maximum tumor length, rad-score, and miRNA-21 (all P < 0.001). The sensitivity, specificity, accuracy, and F1-score of the nomogram in the validation cohort were 0.970, 0.722, 0.884, and 0.916, respectively. The AUC of the nomogram was 0.900 (95% CI: 0.808-0.992) in the validation cohort, higher than that of any other single factor model (maximum tumor length, rad-score, and miRNA-21).

CONCLUSION

The radiogenomics nomogram shows satisfactory predictive performance in predicting MVI in HCC and provides a feasible and practical reference for tumor treatment decisions.

摘要

目的

本研究旨在基于磁共振成像(MRI)和微小RNA(miRNA)开发并验证一种用于预测肝细胞癌(HCC)微血管侵犯(MVI)的放射基因组学列线图。

材料与方法

本队列研究纳入了168例经病理证实的HCC患者(训练队列:n = 116;验证队列:n = 52),这些患者均接受了术前MRI检查和血浆miRNA检测。采用单因素和多因素逻辑回归分析来确定与MVI相关的独立危险因素。这些危险因素被用于生成列线图。通过受试者操作特征曲线(ROC)分析、灵敏度、特异度、准确度和F1评分来评估列线图的性能。进行决策曲线分析以确定该列线图是否具有临床实用性。

结果

MVI的独立危险因素为肿瘤最大径、放射组学评分和miRNA-21(均P < 0.001)。验证队列中列线图的灵敏度、特异度、准确度和F1评分分别为0.970、0.722、0.884和0.916。验证队列中列线图的AUC为0.900(95%CI:0.808 - 0.992),高于任何其他单一因素模型(肿瘤最大径、放射组学评分和miRNA-21)。

结论

放射基因组学列线图在预测HCC的MVI方面表现出令人满意的预测性能,并为肿瘤治疗决策提供了可行且实用的参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验