Zhang Xudong, Wang Junlong, Wang Jun, Wang Hao, Lu Lijun
State Grid Hebei Electric Power Company, Shijiazhuang, China.
Henan XJ Metering Co., Ltd, Xuchang, China.
Front Neurorobot. 2024 Jul 11;18:1431643. doi: 10.3389/fnbot.2024.1431643. eCollection 2024.
To ensure the safe operation and dispatching control of a low-voltage distributed photovoltaic (PV) power distribution network (PDN), the load forecasting problem of the PDN is studied in this study. Based on deep learning technology, this paper proposes a robot-assisted load forecasting method for low-voltage distributed photovoltaic power distribution networks using enhanced long short-term memory (LSTM). This method employs the frequency domain decomposition (FDD) to obtain boundary points and incorporates a dense layer following the LSTM layer to better extract data features. The LSTM is used to predict low-frequency and high-frequency components separately, enabling the model to precisely capture the voltage variation patterns across different frequency components, thereby achieving high-precision voltage prediction. By verifying the historical operation data set of a low-voltage distributed PV-PDN in Guangdong Province, experimental results demonstrate that the proposed "FDD+LSTM" model outperforms both recurrent neural network and support vector machine models in terms of prediction accuracy on both time scales of 1 h and 4 h. Precisely forecast the voltage in different seasons and time scales, which has a certain value in promoting the development of the PDN and related technology industry chain.
为确保低压分布式光伏配电网(PDN)的安全运行与调度控制,本文研究了该配电网的负荷预测问题。基于深度学习技术,提出一种基于增强型长短期记忆(LSTM)的机器人辅助低压分布式光伏配电网负荷预测方法。该方法采用频域分解(FDD)获取边界点,并在LSTM层之后加入全连接层以更好地提取数据特征。利用LSTM分别预测低频和高频分量,使模型能够精确捕捉不同频率分量下的电压变化模式,从而实现高精度电压预测。通过对广东省某低压分布式光伏 - 配电网历史运行数据集进行验证,实验结果表明,所提出的“FDD + LSTM”模型在1小时和4小时时间尺度上的预测精度均优于递归神经网络和支持向量机模型。能够精确预测不同季节和时间尺度下的电压,对推动配电网及相关技术产业链发展具有一定价值。