Suppr超能文献

基于增强长短期记忆网络的机器人智能体用于低压分布式光伏配电网负荷预测

Enhanced LSTM-based robotic agent for load forecasting in low-voltage distributed photovoltaic power distribution network.

作者信息

Zhang Xudong, Wang Junlong, Wang Jun, Wang Hao, Lu Lijun

机构信息

State Grid Hebei Electric Power Company, Shijiazhuang, China.

Henan XJ Metering Co., Ltd, Xuchang, China.

出版信息

Front Neurorobot. 2024 Jul 11;18:1431643. doi: 10.3389/fnbot.2024.1431643. eCollection 2024.

Abstract

To ensure the safe operation and dispatching control of a low-voltage distributed photovoltaic (PV) power distribution network (PDN), the load forecasting problem of the PDN is studied in this study. Based on deep learning technology, this paper proposes a robot-assisted load forecasting method for low-voltage distributed photovoltaic power distribution networks using enhanced long short-term memory (LSTM). This method employs the frequency domain decomposition (FDD) to obtain boundary points and incorporates a dense layer following the LSTM layer to better extract data features. The LSTM is used to predict low-frequency and high-frequency components separately, enabling the model to precisely capture the voltage variation patterns across different frequency components, thereby achieving high-precision voltage prediction. By verifying the historical operation data set of a low-voltage distributed PV-PDN in Guangdong Province, experimental results demonstrate that the proposed "FDD+LSTM" model outperforms both recurrent neural network and support vector machine models in terms of prediction accuracy on both time scales of 1 h and 4 h. Precisely forecast the voltage in different seasons and time scales, which has a certain value in promoting the development of the PDN and related technology industry chain.

摘要

为确保低压分布式光伏配电网(PDN)的安全运行与调度控制,本文研究了该配电网的负荷预测问题。基于深度学习技术,提出一种基于增强型长短期记忆(LSTM)的机器人辅助低压分布式光伏配电网负荷预测方法。该方法采用频域分解(FDD)获取边界点,并在LSTM层之后加入全连接层以更好地提取数据特征。利用LSTM分别预测低频和高频分量,使模型能够精确捕捉不同频率分量下的电压变化模式,从而实现高精度电压预测。通过对广东省某低压分布式光伏 - 配电网历史运行数据集进行验证,实验结果表明,所提出的“FDD + LSTM”模型在1小时和4小时时间尺度上的预测精度均优于递归神经网络和支持向量机模型。能够精确预测不同季节和时间尺度下的电压,对推动配电网及相关技术产业链发展具有一定价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da7/11271154/d03fb590a943/fnbot-18-1431643-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验