Zhou Suxin, Kuang Yixin, Yang Huangsheng, Gan Liwu, Feng Xiaoying, Mao Cheng, Chen Luyi, Zheng Juan, Ouyang Gangfeng
Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education (MOE), Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202412279. doi: 10.1002/anie.202412279. Epub 2024 Sep 17.
Diversifying the connecting junctions will be feasible for the controllable collaboration of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) to rationally design multifunction-integrated heterostructures with enhanced performance, yet it is in the nascent stage. Herein, by intelligently exploiting the polymerization of vinyl group, C-C bond is innovatively introduced to construct the core-shell MOF@COF heterostructures with adjustable shell thickness and rare interpenetrated structure. The unique structure endows prepared C-C-linked MIL-68@COF-Vs with more superior visible-light harvesting and photogenerated carrier separation capability, leading to significantly higher photocatalytic activity and faster degradation rate than pristine MIL-68-C=Cs, COF-V, and imine-linked MIL-68-NH@COF-V. Further, the customized MIL-68@COF-V is in situ grown as reusable films with dramatically boosted performance under ambient conditions, which realize the highly efficient degradation of tetracycline within 15 min (96.5 %), rhodamine 6G within 25 min (97.6 %), and phenol within 40 min (95.3 %) by solar drive. This work exhibits the distinctive advantages of C-C junction in the MOF@COF construction, and highlights the application prospect of rational-designed heterostructure in the treatment of persistent organic pollutants.
使连接节点多样化对于金属有机框架(MOF)和共价有机框架(COF)的可控协作以合理设计具有增强性能的多功能集成异质结构是可行的,但目前仍处于起步阶段。在此,通过巧妙利用乙烯基的聚合反应,创新性地引入C-C键来构建具有可调壳层厚度和罕见互穿结构的核壳MOF@COF异质结构。这种独特的结构赋予制备的C-C连接的MIL-68@COF-Vs更优异的可见光捕获和光生载流子分离能力,导致其光催化活性显著高于原始的MIL-68-C=Cs、COF-V和亚胺连接的MIL-68-NH@COF-V,降解速率更快。此外,定制的MIL-68@COF-V原位生长为可重复使用的薄膜,在环境条件下性能大幅提升,通过太阳能驱动可在15分钟内实现四环素的高效降解(96.5%)、25分钟内实现罗丹明6G的高效降解(97.6%)以及40分钟内实现苯酚的高效降解(95.3%)。这项工作展示了C-C连接在MOF@COF构建中的独特优势,并突出了合理设计的异质结构在处理持久性有机污染物方面的应用前景。