Suppr超能文献

蔗糖结合蛋白和β-伴大豆球蛋白调节大豆种子蛋白质含量并控制多种种子特性。

A sucrose-binding protein and β-conglycinins regulate soybean seed protein content and control multiple seed traits.

机构信息

Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA.

Intelligent Automation & BioMedGenomics Laboratory, Faculty of Sciences and Technologies, University Abdelmalek Essaâdi, Tangier 90000, Morocco.

出版信息

Plant Physiol. 2024 Oct 1;196(2):1298-1321. doi: 10.1093/plphys/kiae380.

Abstract

Expanded agriculture production is required to support the world's population but can impose substantial environmental and climate change costs, particularly with intensifying animal production and protein demand. Shifting from an animal- to a plant-based protein diet has numerous health benefits. Soybean (Glycine max [L.] Merr.) is a major source of protein for human food and animal feed; improved soybean protein content and amino acid composition could provide high-quality soymeal for animal feed, healthier human foods, and a reduced carbon footprint. Nonetheless, during the soybean genome evolution, a balance was established between the amount of seed protein, oil, and carbohydrate content, burdening the development of soybean cultivars with high proteins (HPs). We isolated 2 high-seed protein soybean mutants, HP1 and HP2, with improved seed amino acid composition and stachyose content, pointing to their involvement in controlling seed rebalancing phenomenon. HP1 encodes β-conglycinin (GmCG-1) and HP2 encodes sucrose-binding protein (GmSBP-1), which are both highly expressed in soybean seeds. Mutations in GmSBP-1, GmCG-1, and the paralog GmCG-2 resulted in increased protein levels, confirming their role as general regulators of seed protein content, amino acid seed composition, and seed vigor. Biodiversity analysis of GmCG and GmSBP across 108 soybean accessions revealed haplotypes correlated with protein and seed carbohydrate content. Furthermore, our data revealed an unprecedented role of GmCG and GmSBP proteins in improving seed vigor, crude protein, and amino acid digestibility. Since GmSBP and GmCG are present in most seed plants analyzed, these genes could be targeted to improve multiple seed traits.

摘要

扩大农业生产以支持世界人口,但会带来巨大的环境和气候变化成本,尤其是随着动物生产和蛋白质需求的加剧。从动物蛋白饮食转向植物蛋白饮食有许多健康益处。大豆(Glycine max [L.] Merr.)是人类食品和动物饲料的主要蛋白质来源;提高大豆蛋白含量和氨基酸组成可以为动物饲料提供高质量的豆粕,为人类提供更健康的食品,并减少碳足迹。尽管如此,在大豆基因组进化过程中,种子蛋白、油和碳水化合物含量之间建立了平衡,使高蛋白(HP)大豆品种的发展受到了负担。我们分离出 2 个高蛋白大豆突变体 HP1 和 HP2,它们具有改良的种子氨基酸组成和棉子糖含量,表明它们参与控制种子再平衡现象。HP1 编码β-伴大豆球蛋白(GmCG-1),HP2 编码蔗糖结合蛋白(GmSBP-1),这两种蛋白在大豆种子中都高度表达。GmSBP-1、GmCG-1 和其同源物 GmCG-2 的突变导致蛋白水平增加,证实它们作为种子蛋白含量、氨基酸种子组成和种子活力的一般调节剂的作用。对 108 个大豆品系中的 GmCG 和 GmSBP 的多样性分析揭示了与蛋白和种子碳水化合物含量相关的单倍型。此外,我们的数据揭示了 GmCG 和 GmSBP 蛋白在提高种子活力、粗蛋白和氨基酸消化率方面的前所未有的作用。由于 GmSBP 和 GmCG 存在于大多数分析的种子植物中,这些基因可能成为改善多种种子特性的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验