牙髓学中的人工智能:基本原则、工作流程和任务。

Artificial intelligence in endodontics: Fundamental principles, workflow, and tasks.

机构信息

Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany.

出版信息

Int Endod J. 2024 Nov;57(11):1546-1565. doi: 10.1111/iej.14127. Epub 2024 Jul 26.

Abstract

The integration of artificial intelligence (AI) in healthcare has seen significant advancements, particularly in areas requiring image interpretation. Endodontics, a specialty within dentistry, stands to benefit immensely from AI applications, especially in interpreting radiographic images. However, there is a knowledge gap among endodontists regarding the fundamentals of machine learning and deep learning, hindering the full utilization of AI in this field. This narrative review aims to: (A) elaborate on the basic principles of machine learning and deep learning and present the basics of neural network architectures; (B) explain the workflow for developing AI solutions, from data collection through clinical integration; (C) discuss specific AI tasks and applications relevant to endodontic diagnosis and treatment. The article shows that AI offers diverse practical applications in endodontics. Computer vision methods help analyse images while natural language processing extracts insights from text. With robust validation, these techniques can enhance diagnosis, treatment planning, education, and patient care. In conclusion, AI holds significant potential to benefit endodontic research, practice, and education. Successful integration requires an evolving partnership between clinicians, computer scientists, and industry.

摘要

人工智能(AI)在医疗保健领域的融合取得了重大进展,特别是在需要图像解释的领域。牙髓学是牙科的一个专业,将极大地受益于 AI 应用,特别是在解释放射影像方面。然而,牙髓病学家对机器学习和深度学习的基础知识存在知识差距,这阻碍了 AI 在该领域的充分利用。本叙述性评论旨在:(A)详细阐述机器学习和深度学习的基本原理,并介绍神经网络架构的基础知识;(B)解释开发 AI 解决方案的工作流程,从数据收集到临床整合;(C)讨论与牙髓病诊断和治疗相关的特定 AI 任务和应用。文章表明,AI 在牙髓学中有多种实际应用。计算机视觉方法有助于分析图像,而自然语言处理则从文本中提取见解。通过强大的验证,这些技术可以提高诊断、治疗计划、教育和患者护理的水平。总之,AI 有潜力使牙髓病学的研究、实践和教育受益。成功的整合需要临床医生、计算机科学家和行业之间不断发展的伙伴关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索