Suppr超能文献

一种基于关键候选节点的网络可控性攻击模型

A Critical Candidate Node-Based Attack Model of Network Controllability.

作者信息

Huang Wenli, Chen Liang, Li Junli

机构信息

School of Computer Science, Sichuan Normal University, Chengdu 610101, China.

Visual Computing and Virtual Reality Key Laboratory of Sichuan, Sichuan Normal University, Chengdu 610068, China.

出版信息

Entropy (Basel). 2024 Jul 8;26(7):580. doi: 10.3390/e26070580.

Abstract

The controllability of complex networks is a core issue in network research. Assessing the controllability robustness of networks under destructive attacks holds significant practical importance. This paper studies the controllability of networks from the perspective of malicious attacks. A novel attack model is proposed to evaluate and challenge network controllability. This method disrupts network controllability with high precision by identifying and targeting critical candidate nodes. The model is compared with traditional attack methods, including degree-based, betweenness-based, closeness-based, pagerank-based, and hierarchical attacks. Results show that the model outperforms these methods in both disruption effectiveness and computational efficiency. Extensive experiments on both synthetic and real-world networks validate the superior performance of this approach. This study provides valuable insights for identifying key nodes crucial for maintaining network controllability. It also offers a solid framework for enhancing network resilience against malicious attacks.

摘要

复杂网络的可控性是网络研究中的一个核心问题。评估在破坏性攻击下网络的可控性鲁棒性具有重要的实际意义。本文从恶意攻击的角度研究网络的可控性。提出了一种新颖的攻击模型来评估和挑战网络可控性。该方法通过识别和瞄准关键候选节点,以高精度破坏网络可控性。将该模型与传统攻击方法进行了比较,包括基于度、基于介数、基于紧密性、基于PageRank和分层攻击。结果表明,该模型在破坏有效性和计算效率方面均优于这些方法。在合成网络和真实网络上进行的大量实验验证了该方法的卓越性能。本研究为识别维持网络可控性至关重要的关键节点提供了有价值的见解。它还为增强网络抵御恶意攻击的弹性提供了一个坚实的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e2/11275513/5dbba1ac28e7/entropy-26-00580-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验