Suppr超能文献

优化基于细丝的TCP支架设计以实现骨传导和骨增强:来自体内兔模型的见解

Optimizing Filament-Based TCP Scaffold Design for Osteoconduction and Bone Augmentation: Insights from In Vivo Rabbit Models.

作者信息

Guerrero Julien, Maevskaia Ekaterina, Ghayor Chafik, Bhattacharya Indranil, Weber Franz E

机构信息

Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, 8032 Zurich, Switzerland.

Center for Surgical Research, University Hospital and University of Zurich, 8032 Zurich, Switzerland.

出版信息

J Funct Biomater. 2024 Jun 25;15(7):174. doi: 10.3390/jfb15070174.

Abstract

Additive manufacturing has emerged as a transformative tool in biomedical engineering, offering precise control over scaffold design for bone tissue engineering and regenerative medicine. While much attention has been focused on optimizing pore-based scaffold architectures, filament-based microarchitectures remain relatively understudied, despite the fact that the majority of 3D-printers generate filament-based structures. Here, we investigated the influence of filament characteristics on bone regeneration outcomes using a lithography-based additive manufacturing approach. Three distinct filament-based scaffolds (Fil050, Fil083, and Fil125) identical in macroporosity and transparency, crafted from tri-calcium phosphate (TCP) with varying filament thicknesses and distance, were evaluated in a rabbit model of bone augmentation and non-critical calvarial defect. Additionally, two scaffold types differing in filament directionality (Fil and FilG) were compared to elucidate optimal design parameters. Distance of bone ingrowth and percentage of regenerated area within scaffolds were measured by histomorphometric analysis. Our findings reveal filaments of 0.50 mm as the most effective filament-based scaffold, demonstrating superior bone ingrowth and bony regenerated area compared to larger size filament (i.e., 0.83 mm and 1.25 mm scaffolds). Optimized directionality of filaments can overcome the reduced performance of larger filaments. This study advances our understanding of microarchitecture's role in bone tissue engineering and holds significant implications for clinical practice, paving the way for the development of highly tailored, patient-specific bone substitutes with enhanced efficacy.

摘要

增材制造已成为生物医学工程中的一种变革性工具,能够对骨组织工程和再生医学的支架设计进行精确控制。尽管很多注意力都集中在优化基于孔隙的支架结构上,但基于细丝的微结构仍相对较少被研究,尽管大多数3D打印机生成的是基于细丝的结构。在此,我们使用基于光刻的增材制造方法研究了细丝特性对骨再生结果的影响。在兔骨增量和非关键性颅骨缺损模型中评估了三种由磷酸三钙(TCP)制成、大孔隙率和透明度相同、细丝厚度和间距不同的基于细丝的独特支架(Fil050、Fil083和Fil125)。此外,还比较了两种细丝方向性不同的支架类型(Fil和FilG),以阐明最佳设计参数。通过组织形态计量分析测量支架内骨长入的距离和再生面积的百分比。我们的研究结果表明,0.50毫米的细丝是最有效的基于细丝的支架,与更大尺寸的细丝(即0.83毫米和1.25毫米的支架)相比,显示出更好的骨长入和骨再生面积。细丝的优化方向性可以克服较大细丝性能的下降。这项研究增进了我们对微结构在骨组织工程中作用的理解,对临床实践具有重要意义,为开发具有更高疗效的高度定制化、针对患者的骨替代物铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3344/11278252/eb7453f19614/jfb-15-00174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验