Al Bahri Mohammed, Al-Kamiyani Salim
Department of Basic and Applied Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.C 400, Oman.
Nanomaterials (Basel). 2024 Jul 15;14(14):1202. doi: 10.3390/nano14141202.
In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control DW thermal stability at the pinning sites. It is proposed to design a new scheme using a stepped area of a certain depth () and length (). The study reveals that DW thermal stability is highly dependent on the geometry of the pinning area ( and λ), magnetic properties such as saturation magnetization () and magnetic anisotropy energy (), and the dimensions of the nanowires. For certain values of and , DWs remain stable at temperatures over 500 K, which is beneficial for memory applications. Higher DW thermal stability is also achieved by decreasing nanowire thickness to less than 10 nm, making DW memories stable below 800 K. Finally, our results help to construct DW memory nanodevices with nanodimensions less than a 40 nm width and less than a 10 nm thickness with high DW thermal stability.
未来,磁畴壁存储器将以高存储容量和快速读/写速度取代传统存储存储器。磁畴壁存储器中唯一的故障源于钉扎位点处的磁畴壁热涨落。这项工作通过计算研究了可能有助于控制钉扎位点处磁畴壁热稳定性的参数。建议设计一种使用具有一定深度()和长度()的阶梯区域的新方案。研究表明,磁畴壁热稳定性高度依赖于钉扎区域的几何形状(和λ)、诸如饱和磁化强度()和磁各向异性能量()等磁性特性以及纳米线的尺寸。对于特定的和值,磁畴壁在超过500 K的温度下仍保持稳定,这对存储器应用是有益的。通过将纳米线厚度减小到小于10 nm,也能实现更高的磁畴壁热稳定性,使磁畴壁存储器在800 K以下保持稳定。最后,我们的结果有助于构建具有小于40 nm宽度和小于10 nm厚度的纳米尺寸且具有高磁畴壁热稳定性的磁畴壁存储器纳米器件。