Suppr超能文献

由甲烷和一氧化碳进行放射性催化合成乙酸

Radiocatalytic Synthesis of Acetic Acid from CH and CO.

作者信息

Mu Bo-Shuai, Zhang Yugang, Peng Mi, Tu Zhiyu, Guo Zhenbo, Shen Siyong, Xu Yang, Liang Weiqiu, Wang Xianglin, Wang Meng, Ma Ding, Liu Zhibo

机构信息

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Peking University-Tsinghua University Center for Life Sciences, Peking University, 100871, Beijing, China.

出版信息

Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202407443. doi: 10.1002/anie.202407443. Epub 2024 Sep 17.

Abstract

The C-C coupling of methane (CH) and carbon dioxide (CO) to generate acetic acid (CHCOOH) represents a highly atom-efficient chemical conversion, fostering the comprehensive utilization of greenhouse gases. However, the inherent thermodynamic stability and kinetic inertness of CH and CO present obstacles to achieving efficient and selective conversion at room temperature. Our study reveals that hydroxyl radicals (⋅OH) and hydrated electrons (e ) produced by water radiolysis can effectively activate CH and CO, yielding methyl radicals (⋅CH) and carbon dioxide radical anions(⋅CO ) that facilitate the production of CHCOOH at ambient temperature. The introduction of radiation-synthesized CuO-anchored TiO bifunctional catalyst could further enhance reaction efficiency and selectivity remarkably by boosting radiation absorption and radical stability, resulting in a concentration of 7.1 mmol ⋅ L of CHCOOH with near-unity selectivity (>95 %). These findings offer valuable insights for catalyst design and implementation in radiation-induced chemical conversion.

摘要

甲烷(CH)与二氧化碳(CO)的C-C偶联生成乙酸(CH₃COOH)是一种原子利用率极高的化学转化过程,有助于促进温室气体的综合利用。然而,CH₄和CO₂固有的热力学稳定性和动力学惰性给在室温下实现高效且选择性的转化带来了障碍。我们的研究表明,水辐射分解产生的羟基自由基(⋅OH)和水合电子(e⁻)能够有效活化CH₄和CO₂,生成甲基自由基(⋅CH₃)和二氧化碳自由基阴离子(⋅CO₂⁻),从而在环境温度下促进CH₃COOH的生成。引入辐射合成的CuO锚定TiO₂双功能催化剂可通过增强辐射吸收和自由基稳定性显著提高反应效率和选择性,得到浓度为7.1 mmol ⋅ L⁻¹的CH₃COOH,选择性接近100%(>95%)。这些发现为辐射诱导化学转化中的催化剂设计和应用提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验