Suppr超能文献

一种透明的机器学习算法揭示了与 2 型糖尿病和二甲双胍单药治疗失败患者治疗惰性相关的 HbA1c 模式。

A transparent machine learning algorithm uncovers HbA1c patterns associated with therapeutic inertia in patients with type 2 diabetes and failure of metformin monotherapy.

机构信息

AMD-AI National Group Coordinator, UOS Integrating Primary and Specialist Care, ASST Nord Milano, Via Filippo Carcano 17, 20149 Milan, Italy.

Mix-x Partner, Via Circonvallazione 5, Ivrea (TO), Italy.

出版信息

Int J Med Inform. 2024 Oct;190:105550. doi: 10.1016/j.ijmedinf.2024.105550. Epub 2024 Jul 15.

Abstract

AIMS

This study aimed to identify and categorize the determinants influencing the intensification of therapy in Type 2 Diabetes (T2D) patients with suboptimal blood glucose control despite metformin monotherapy.

METHODS

Employing the Logic Learning Machine (LLM), an advanced artificial intelligence system, we scrutinized electronic health records of 1.5 million patients treated in 271 diabetes clinics affiliated with the Italian Association of Medical Diabetologists from 2005 to 2019. Inclusion criteria comprised patients on metformin monotherapy with two consecutive mean HbA1c levels exceeding 7.0%. The cohort was divided into "inertia-NO" (20,067 patients with prompt intensification) and "inertia-YES" (13,029 patients without timely intensification).

RESULTS

The LLM model demonstrated robust discriminatory ability among the two groups (ROC-AUC = 0.81, accuracy = 0.71, precision = 0.80, recall = 0.71, F1 score = 0.75). The main novelty of our results is indeed the identification of two main distinct subtypes of therapeutic inertia. The first exhibited a gradual but steady HbA1c increase, while the second featured a moderate, non-uniform rise with substantial fluctuations.

CONCLUSIONS

Our analysis sheds light on the significant impact of HbA1c levels over time on therapeutic inertia in patients with T2D, emphasizing the importance of early intervention in the presence of specific HbA1c patterns.

摘要

目的

本研究旨在确定并分类影响 2 型糖尿病(T2D)患者血糖控制不佳(尽管接受二甲双胍单药治疗)时强化治疗的决定因素。

方法

我们使用先进的人工智能系统逻辑学习机(LLM),对 2005 年至 2019 年间意大利医学糖尿病协会下属 271 家糖尿病诊所的 150 万名接受治疗的患者的电子健康记录进行了分析。纳入标准包括接受二甲双胍单药治疗且连续两次平均 HbA1c 水平超过 7.0%的患者。该队列分为“惰性-否”(20067 例患者迅速强化治疗)和“惰性-是”(13029 例患者未及时强化治疗)。

结果

LLM 模型在两组之间表现出较强的区分能力(ROC-AUC=0.81、准确率=0.71、精密度=0.80、召回率=0.71、F1 评分=0.75)。我们研究结果的主要新颖之处在于确定了两种主要的治疗惰性亚型。第一种表现为 HbA1c 逐渐但稳定地升高,而第二种则表现为中度、非均匀升高且波动较大。

结论

我们的分析揭示了 HbA1c 水平随时间推移对 T2D 患者治疗惰性的重大影响,强调了在存在特定 HbA1c 模式时早期干预的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验