Suppr超能文献

小麦含量和来源对精酿小麦啤酒挥发物的影响:采用组合多元统计方法的研究。

Influence of wheat content and origin on the volatilome of craft wheat beer: An investigation by combined multivariate statistical approaches.

机构信息

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.

Food consultant as BeerStudioLab, Via Nazionale per Teramo 75, 64021, Giulianova, Italy.

出版信息

Food Res Int. 2024 Sep;191:114709. doi: 10.1016/j.foodres.2024.114709. Epub 2024 Jun 29.

Abstract

A deeper knowledge of the effect of wheat origin on the volatile organic compounds (VOCs) profile of craft wheat beer is crucial for its quality improvement and local product valorisation. The VOCs profile of 17 craft wheat beers obtained by common and durum, heritage and modern, wheat varieties grown in different fields sited at different altitudes was analysed. Data were processed by multivariate analysis using different approaches. Partial least square (PLS) analysis evidenced that wheat concentration was the highest source of VOCs variance, followed by, wheat species, wheat ancientness, and altitude of cultivation. An insight into the effect of wheat concentration was given by sparse PLS analysis (sPLS). The effect of wheat variety was explored by linear discriminant analysis (LDA), which permitted to correctly classify craft beers made with wheat of different origin (species and variety) on the basis of their VOCs profile. sPLS regression analysis permitted to find a combination of VOCs able to predict the altitude of wheat cultivation as well as to correctly classify wheat beers made with wheat cultivated at different altitudes. A further 'one versus all' approach by Soft Independent Modelling of Class Analogies (SIMCA) permitted to correctly authenticate beers made with different cereal species. Finally, shape analysis by generalized Procrustes analysis (GPA) revealed that the differences among samples were conserved and reflected from wheat kernels to wheat beers. This study suggests a promising use of volatiles fingerprinting with a combination of different statistical approaches to authenticate beer made with wheat of different origin and cultivated at different altitudes, thus stressing out the importance of territory in craft beer production, which, until now, was a neglected topic.

摘要

深入了解小麦产地对精酿小麦啤酒挥发性有机化合物(VOCs)谱的影响对于提高其质量和实现本地产品增值至关重要。本研究分析了在不同海拔高度的不同地点种植的普通和硬质小麦、传统和现代小麦品种所酿造的 17 种精酿小麦啤酒的 VOCs 谱。采用不同方法的多元分析处理数据。偏最小二乘法(PLS)分析表明,小麦浓度是 VOCs 变化的最大来源,其次是小麦品种、小麦古老度和种植海拔。稀疏偏最小二乘法(sPLS)分析深入探讨了小麦浓度的影响。线性判别分析(LDA)探讨了小麦品种的影响,该方法允许根据其 VOCs 谱正确分类来自不同起源(品种和品种)的小麦酿造的精酿啤酒。sPLS 回归分析允许找到一组 VOCs,能够预测小麦种植的海拔高度,以及正确分类在不同海拔高度种植的小麦酿造的啤酒。进一步通过软独立建模分类相似性(SIMCA)的“一对一”方法允许正确验证用不同谷物酿造的啤酒。最后,广义 Procrustes 分析(GPA)的形状分析表明,样品之间的差异被保留并从麦粒反映到小麦啤酒中。本研究通过使用不同统计方法的组合对挥发性指纹分析进行了有前途的应用,以验证来自不同产地和不同海拔高度种植的小麦酿造的啤酒,从而强调了产地在精酿啤酒生产中的重要性,而这一点直到现在才被忽视。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验