Suppr超能文献

基于书面图片描述任务对遗忘型轻度认知障碍和非遗忘型轻度认知障碍患者进行机器学习分类

Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks.

作者信息

Kim Hana, Hillis Argye E, Themistocleous Charalambos

机构信息

Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL 33620, USA.

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

出版信息

Brain Sci. 2024 Jun 27;14(7):652. doi: 10.3390/brainsci14070652.

Abstract

Individuals with Mild Cognitive Impairment (MCI), a transitional stage between cognitively healthy aging and dementia, are characterized by subtle neurocognitive changes. Clinically, they can be grouped into two main variants, namely patients with amnestic MCI (aMCI) and non-amnestic MCI (naMCI). The distinction of the two variants is known to be clinically significant as they exhibit different progression rates to dementia. However, it has been particularly challenging to classify the two variants robustly. Recent research indicates that linguistic changes may manifest as one of the early indicators of pathology. Therefore, we focused on MCI's discourse-level writing samples in this study. We hypothesized that a written picture description task can provide information that can be used as an ecological, cost-effective classification system between the two variants. We included one hundred sixty-nine individuals diagnosed with either aMCI or naMCI who received neurophysiological evaluations in addition to a short, written picture description task. Natural Language Processing (NLP) and a BERT pre-trained language model were utilized to analyze the writing samples. We showed that the written picture description task provided 90% overall classification accuracy for the best classification models, which performed better than cognitive measures. Written discourses analyzed by AI models can automatically assess individuals with aMCI and naMCI and facilitate diagnosis, prognosis, therapy planning, and evaluation.

摘要

轻度认知障碍(MCI)患者处于认知健康老龄化和痴呆症之间的过渡阶段,其特征是存在细微的神经认知变化。在临床上,他们可分为两个主要类型,即遗忘型MCI(aMCI)患者和非遗忘型MCI(naMCI)患者。已知这两种类型的区分在临床上具有重要意义,因为它们向痴呆症发展的速率不同。然而,要可靠地对这两种类型进行分类一直特别具有挑战性。最近的研究表明,语言变化可能表现为病理的早期指标之一。因此,在本研究中我们聚焦于MCI患者的语篇层面写作样本。我们假设一项书面图片描述任务能够提供可用作这两种类型之间的一种生态、经济有效的分类系统的信息。我们纳入了169名被诊断为aMCI或naMCI的个体,他们除了完成一项简短的书面图片描述任务外,还接受了神经生理学评估。利用自然语言处理(NLP)和一个BERT预训练语言模型来分析写作样本。我们表明,对于最佳分类模型而言,书面图片描述任务的总体分类准确率达到90%,其表现优于认知测量指标。由人工智能模型分析的书面语篇能够自动评估aMCI和naMCI个体,并有助于诊断、预后、治疗规划及评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7517/11274603/2528de58e700/brainsci-14-00652-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验