Shankar Ravi, Bundele Anjali, Mukhopadhyay Amartya
Medical Affairs-Research Innovation and Enterprise, Alexandra Hospital, National University Health System, Singapore.
Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Health System, Singapore.
Mayo Clin Proc Digit Health. 2025 Mar 5;3(2):100205. doi: 10.1016/j.mcpdig.2025.100205. eCollection 2025 Jun.
To systematically evaluate the effectiveness and methodologic approaches of natural language processing (NLP) techniques for early detection of cognitive decline through speech and language analysis.
We conducted a comprehensive search of 8 databases from inception through August 31, 2024, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies were included if they used NLP techniques to analyze speech or language data for detecting cognitive impairment and reported diagnostic accuracy metrics. Two independent reviewers (R.S. and A.B.) screened articles and extracted data on study characteristics, NLP methods, and outcomes.
Of 23,562 records identified, 51 studies met inclusion criteria, involving 17,340 participants (mean age, 72.4 years). Combined linguistic and acoustic approaches achieved the highest diagnostic accuracy (average 87%; area under the curve [AUC], 0.89) compared with linguistic-only (83%; AUC, 0.85) or acoustic-only approaches (80%; AUC, 0.82). Lexical diversity, syntactic complexity, and semantic coherence were consistently strong predictors across cognitive conditions. Picture description tasks were most common (n=21), followed by spontaneous speech (n=15) and story recall (n=8). Crosslinguistic applicability was found across 8 languages, although language-specific adaptations were necessary. Longitudinal studies (n=9) reported potential for early detection but were limited by smaller sample sizes (average n=159) compared with cross-sectional studies (n=42; average n=274).
Natural language processing techniques show promising diagnostic accuracy for detecting cognitive impairment across multiple languages and clinical contexts. Although combined linguistic-acoustic approaches appear most effective, methodologic heterogeneity and small sample sizes in existing studies suggest the need for larger, standardized investigations to establish clinical utility.
通过语音和语言分析,系统评价自然语言处理(NLP)技术在早期检测认知功能衰退方面的有效性和方法。
我们按照系统评价和Meta分析的首选报告项目指南,对8个数据库从建库至2024年8月31日进行了全面检索。纳入的研究需使用NLP技术分析语音或语言数据以检测认知障碍,并报告诊断准确性指标。两名独立评审员(R.S.和A.B.)筛选文章并提取有关研究特征、NLP方法和结果的数据。
在识别出的23562条记录中,51项研究符合纳入标准,涉及17340名参与者(平均年龄72.4岁)。与仅使用语言方法(83%;曲线下面积[AUC],0.85)或仅使用声学方法(80%;AUC,0.82)相比,语言和声学相结合的方法诊断准确性最高(平均87%;AUC,0.89)。词汇多样性、句法复杂性和语义连贯性在各种认知状况下始终是强有力的预测指标。图片描述任务最为常见(n = 21),其次是自发语音(n = 15)和故事回忆(n = 8)。尽管需要针对特定语言进行调整,但在8种语言中均发现了跨语言适用性。纵向研究(n = 9)报告了早期检测的潜力,但与横断面研究(n = 42;平均n = 274)相比,样本量较小(平均n = 159)限制了其发展。
自然语言处理技术在多种语言和临床环境中检测认知障碍方面显示出有前景的诊断准确性。尽管语言 - 声学相结合的方法似乎最有效,但现有研究中的方法异质性和小样本量表明,需要进行更大规模、标准化的研究以确立其临床实用性。