Suppr超能文献

基于年龄的眼动发育生物标志物:使用机器学习的回顾性分析

Age-Based Developmental Biomarkers in Eye Movements: A Retrospective Analysis Using Machine Learning.

作者信息

Hunfalvay Melissa, Bolte Takumi, Singh Abhishek, Greenstein Ethan, Murray Nicholas P, Carrick Frederick Robert

机构信息

RightEye LLC., 6107A, Suite 400, Rockledge Drive, Bethesda, MD 20814, USA.

Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Brain Sci. 2024 Jul 9;14(7):686. doi: 10.3390/brainsci14070686.

Abstract

This study aimed to identify when and how eye movements change across the human lifespan to benchmark developmental biomarkers. The sample size comprised 45,696 participants, ranging in age from 6 to 80 years old ( = 30.39; = 17.46). Participants completed six eye movement tests: Circular Smooth Pursuit, Horizontal Smooth Pursuit, Vertical Smooth Pursuit, Horizontal Saccades, Vertical Saccades, and Fixation Stability. These tests examined all four major eye movements (fixations, saccades, pursuits, and vergence) using 89 eye-tracking algorithms. A semi-supervised, self-training, machine learning classifier was used to group the data into age ranges. This classifier resulted in 12 age groups: 6-7, 8-11, 12-14, 15-25, 26-31, 32-38, 39-45, 46-53, 54-60, 61-68, 69-76, and 77-80 years. To provide a descriptive indication of the strength of the self-training classifier, a series of multiple analyses of variance (MANOVA) were conducted on the multivariate effect of the age groups by test set. Each MANOVA revealed a significant multivariate effect on age groups ( < 0.001). Developmental changes in eye movements across age categories were identified. Specifically, similarities were observed between very young and elderly individuals. Middle-aged individuals (30s) generally showed the best eye movement metrics. Clinicians and researchers may use the findings from this study to inform decision-making on patients' health and wellness and guide effective research methodologies.

摘要

本研究旨在确定眼动在人类生命周期中何时以及如何发生变化,以便为发育生物标志物设定基准。样本量包括45696名参与者,年龄范围为6至80岁(平均年龄 = 30.39岁;标准差 = 17.46岁)。参与者完成了六项眼动测试:圆周平滑追踪、水平平滑追踪、垂直平滑追踪、水平扫视、垂直扫视和注视稳定性。这些测试使用89种眼动追踪算法检查了所有四种主要眼动(注视、扫视、追踪和聚散)。使用半监督、自训练的机器学习分类器将数据分组到不同年龄范围。该分类器产生了12个年龄组:6 - 7岁、8 - 11岁、12 - 14岁、15 - 25岁、26 - 31岁、32 - 38岁、39 - 45岁、46 - 53岁、54 - 60岁、61 - 68岁、69 - 76岁和77 - 80岁。为了对自训练分类器的强度提供描述性指标,对按测试集划分的年龄组的多变量效应进行了一系列多变量方差分析(MANOVA)。每次MANOVA都显示出年龄组存在显著的多变量效应(p < 0.001)。确定了不同年龄类别之间眼动的发育变化。具体而言,在非常年轻和年长的个体之间观察到了相似之处。中年个体(30多岁)通常表现出最佳的眼动指标。临床医生和研究人员可以利用本研究的结果为患者的健康决策提供信息,并指导有效的研究方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f562/11274786/d3d836d37f6f/brainsci-14-00686-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验