Suppr超能文献

三维打印琼脂糖微模具支持无支架小鼠体外卵泡生长、排卵和黄体化。

Three-Dimensionally Printed Agarose Micromold Supports Scaffold-Free Mouse Ex Vivo Follicle Growth, Ovulation, and Luteinization.

作者信息

Zaniker Emily J, Hashim Prianka H, Gauthier Samuel, Ankrum James A, Campo Hannes, Duncan Francesca E

机构信息

Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52245, USA.

出版信息

Bioengineering (Basel). 2024 Jul 15;11(7):719. doi: 10.3390/bioengineering11070719.

Abstract

Ex vivo follicle growth is an essential tool, enabling interrogation of folliculogenesis, ovulation, and luteinization. Though significant advancements have been made, existing follicle culture strategies can be technically challenging and laborious. In this study, we advanced the field through development of a custom agarose micromold, which enables scaffold-free follicle culture. We established an accessible and economical manufacturing method using 3D printing and silicone molding that generates biocompatible hydrogel molds without the risk of cytotoxicity from leachates. Each mold supports simultaneous culture of multiple multilayer secondary follicles in a single focal plane, allowing for constant timelapse monitoring and automated analysis. Mouse follicles cultured using this novel system exhibit significantly improved growth and ovulation outcomes with comparable survival, oocyte maturation, and hormone production profiles as established three-dimensional encapsulated in vitro follicle growth (eIVFG) systems. Additionally, follicles recapitulated aspects of in vivo ovulation physiology with respect to their architecture and spatial polarization, which has not been observed in eIVFG systems. This system offers simplicity, scalability, integration with morphokinetic analyses of follicle growth and ovulation, and compatibility with existing microphysiological platforms. This culture strategy has implications for fundamental follicle biology, fertility preservation strategies, reproductive toxicology, and contraceptive drug discovery.

摘要

体外卵泡生长是一种重要工具,可用于研究卵泡发生、排卵和黄体化。尽管已取得显著进展,但现有的卵泡培养策略在技术上可能具有挑战性且费力。在本研究中,我们通过开发定制的琼脂糖微模具推动了该领域的发展,该模具可实现无支架卵泡培养。我们利用3D打印和硅胶成型建立了一种便捷且经济的制造方法,可生成生物相容性水凝胶模具,且不存在浸出液细胞毒性风险。每个模具可在单个焦平面上同时培养多个多层次级卵泡,便于进行连续的延时监测和自动分析。使用这种新型系统培养的小鼠卵泡,其生长和排卵结果显著改善,在存活率、卵母细胞成熟和激素产生方面与已建立的三维包封体外卵泡生长(eIVFG)系统相当。此外,卵泡在结构和空间极化方面重现了体内排卵生理学的某些方面,这在eIVFG系统中尚未观察到。该系统具有简单性、可扩展性、与卵泡生长和排卵的形态动力学分析相结合的能力,以及与现有微生理平台的兼容性。这种培养策略对基础卵泡生物学、生育力保存策略、生殖毒理学和避孕药研发具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/11274170/e9a9279b836d/bioengineering-11-00719-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验