Suppr超能文献

TFTF:一种基于 R 的人类转录因子-靶标相互作用解码综合工具。

TFTF: An R-Based Integrative Tool for Decoding Human Transcription Factor-Target Interactions.

机构信息

School of Public Health, Suzhou Medical College, Soochow University, Suzhou 215123, China.

出版信息

Biomolecules. 2024 Jun 24;14(7):749. doi: 10.3390/biom14070749.

Abstract

Transcription factors (TFs) are crucial in modulating gene expression and sculpting cellular and organismal phenotypes. The identification of TF-target gene interactions is pivotal for comprehending molecular pathways and disease etiologies but has been hindered by the demanding nature of traditional experimental approaches. This paper introduces a novel web application and package utilizing the R program, which predicts TF-target gene relationships and vice versa. Our application integrates the predictive power of various bioinformatic tools, leveraging their combined strengths to provide robust predictions. It merges databases for enhanced precision, incorporates gene expression correlation for accuracy, and employs pan-tissue correlation analysis for context-specific insights. The application also enables the integration of user data with established resources to analyze TF-target gene networks. Despite its current limitation to human data, it provides a platform to explore gene regulatory mechanisms comprehensively. This integrated, systematic approach offers researchers an invaluable tool for dissecting the complexities of gene regulation, with the potential for future expansions to include a broader range of species.

摘要

转录因子 (TFs) 在调节基因表达和塑造细胞和机体表型方面起着至关重要的作用。鉴定 TF-靶基因相互作用对于理解分子途径和疾病发病机制至关重要,但传统实验方法的苛刻性质阻碍了这一进程。本文介绍了一种利用 R 程序的新型网络应用程序和软件包,用于预测 TF-靶基因关系及其反之亦然。我们的应用程序集成了各种生物信息学工具的预测能力,利用它们的综合优势提供强大的预测。它合并了数据库以提高精度,纳入基因表达相关性以提高准确性,并采用泛组织相关性分析以获得特定于上下文的见解。该应用程序还允许将用户数据与现有资源集成,以分析 TF-靶基因网络。尽管它目前仅限于人类数据,但它为全面探索基因调控机制提供了一个平台。这种集成的系统方法为研究人员提供了一个宝贵的工具,用于剖析基因调控的复杂性,并有潜力在未来扩展到包括更广泛的物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfbf/11274450/2380ec1a72fc/biomolecules-14-00749-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验