Suppr超能文献

基于 PCA、药效团、对接和分子动力学的 RhIR 抑制剂系统层次虚拟筛选模型。

A Systematic Hierarchical Virtual Screening Model for RhlR Inhibitors Based on PCA, Pharmacophore, Docking, and Molecular Dynamics.

机构信息

College of Pharmacy, Jinan University, Guangzhou 511436, China.

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.

出版信息

Int J Mol Sci. 2024 Jul 22;25(14):8000. doi: 10.3390/ijms25148000.

Abstract

RhlR plays a key role in the quorum sensing of . The current structure-activity relationship (SAR) studies of RhlR inhibitors mainly focus on elucidating the functional groups. Based on a systematic review of previous research on RhlR inhibitors, this study aims to establish a systematic, hierarchical screening model for RhlR inhibitors. We initially established a database and utilized principal component analysis (PCA) to categorize the inhibitors into two classes. Based on the training set, pharmacophore models were established to elucidate the structural characteristics of ligands. Subsequently, molecular docking, molecular dynamics simulations, and the calculation of binding free energy and strain energy were performed to validate the crucial interactions between ligands and receptors. Then, the screening criteria for RhlR inhibitors were established hierarchically based on ligand structure characteristics, ligand-receptor interaction, and receptor affinity. Test sets were finally employed to validate the hierarchical virtual screening model by comparing it with the current SAR studies of RhlR inhibitors. The hierarchical screening model was confirmed to possess higher accuracy and a true positive rate, which holds promise for subsequent screening and the discovery of active RhlR inhibitors.

摘要

RhlR 在群体感应中起着关键作用。目前 RhlR 抑制剂的结构-活性关系 (SAR) 研究主要集中在阐明功能基团。本研究在对 RhlR 抑制剂的先前研究进行系统回顾的基础上,旨在建立 RhlR 抑制剂的系统、分层筛选模型。我们最初建立了一个数据库,并利用主成分分析 (PCA) 将抑制剂分为两类。基于训练集,建立药效团模型以阐明配体的结构特征。随后,进行分子对接、分子动力学模拟以及结合自由能和应变能的计算,以验证配体与受体之间的关键相互作用。然后,根据配体结构特征、配体-受体相互作用和受体亲和力,分层建立 RhlR 抑制剂的筛选标准。最后,通过将其与当前 RhlR 抑制剂的 SAR 研究进行比较,使用测试集来验证分层虚拟筛选模型。分层筛选模型被证实具有更高的准确性和真阳性率,有望用于后续的筛选和活性 RhlR 抑制剂的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b4/11276863/59ef0d863eea/ijms-25-08000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验