Tao Baochun, Zhang Chengqi, Deng Qianfa, Wang Qiming, Zhang Hong, Sun Lizhi
Special Equipment Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
Ultra-Precision Machining Center, Zhejiang University of Technology, Hangzhou 310023, China.
Materials (Basel). 2024 Jul 12;17(14):3449. doi: 10.3390/ma17143449.
To enhance the erosion efficiency in traditional abrasive water jet processing, an abrasive water jet processing method based on self-excited fluid oscillation is proposed. Traditional abrasive water jet methods suffer from reduced jet kinetic energy due to the presence of a stagnation layer, which hinders efficient material removal. By integrating a self-oscillation chamber into the conventional abrasive water jet nozzle, the continuous jet is transformed into a pulsed jet, thereby increasing the jet velocity and enhancing the kinetic energy of the process. This modification aims to improve material removal efficiency. Using Ansys Fluent, we simulated the material removal efficiency on workpiece surfaces with varying lengths of self-oscillation chambers. The simulation results reveal that the optimal length of the self-oscillation chamber for maximum erosion is 4 mm. SiC materials were used to evaluate the impact of self-oscillation chamber length (L), jet pressure (P), abrasive flow rate (M), and abrasive grain size (D) on erosion. Experimental results show that the self-oscillation chamber increases erosion depth by 33 μm. The maximum erosion depths recorded were 167 μm when L = 4 mm, 223 μm when P = 16 MPa, 193 μm when M = 80 g/min, and 268 μm when D = 2000 μm. Overall, the self-excited oscillation effect enhances the erosion efficiency of the waterjet by 14%. This study further elucidates the factors influencing erosion behaviors in oscillating abrasive water jet processing.
为提高传统磨料水射流加工中的侵蚀效率,提出了一种基于自激流体振荡的磨料水射流加工方法。传统磨料水射流方法由于存在停滞层而导致射流动能降低,这阻碍了高效的材料去除。通过将自振荡腔集成到传统磨料水射流喷嘴中,连续射流转变为脉冲射流,从而提高了射流速度并增强了加工过程的动能。这种改进旨在提高材料去除效率。使用Ansys Fluent,我们模拟了不同长度自振荡腔的工件表面上的材料去除效率。模拟结果表明,实现最大侵蚀的自振荡腔的最佳长度为4毫米。使用碳化硅材料评估自振荡腔长度(L)、射流压力(P)、磨料流量(M)和磨料粒度(D)对侵蚀的影响。实验结果表明,自振荡腔使侵蚀深度增加了33μm。记录的最大侵蚀深度分别为:L = 4毫米时为167μm,P = 16兆帕时为223μm,M = 80克/分钟时为193μm,D = 2000μm时为268μm。总体而言,自激振荡效应使水射流的侵蚀效率提高了14%。本研究进一步阐明了影响振荡磨料水射流加工中侵蚀行为的因素。