Suppr超能文献

建立预测尿石症相关梗阻性肾盂肾炎合并脓毒症患者脓毒症的列线图。

Development of a Predictive Nomogram for Sepsis in Patients with Urolithiasis-Related Obstructive Pyelonephritis.

机构信息

Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.

Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan.

出版信息

Medicina (Kaunas). 2024 Jul 9;60(7):1113. doi: 10.3390/medicina60071113.

Abstract

: In patients with urolithiasis-related obstructive pyelonephritis (UROP), sepsis represents a critical and concerning complication that can substantially increase the mortality rate. This study aimed to identify the risk factors for sepsis in UROP patients and to develop a predictive nomogram model. : We analyzed data from 148 patients who met the UROP criteria and were admitted to Chang Gung Memorial Hospital between 1 January 2016 and 31 December 2021. The primary outcome evaluated was the incidence of sepsis, as defined by the most recent Sepsis-3 guidelines. To identify potential risk factors for sepsis, we employed the Least Absolute Shrinkage and Selection Operator (LASSO) regression technique. Subsequently, we utilized multivariable logistic regression to construct the predictive model. : There was a total of 102 non-sepsis cases and 46 sepsis cases. Risk factors for sepsis in multivariable analysis were a history of diabetes mellitus (DM) (OR = 4.24, = 0.007), shock index (SI) (×10) (OR = 1.55, < 0.001), C-reactive protein (CRP) (mg/dL) (OR = 1.08, = 0.005), and neutrophil to lymphocyte ratio (NLR) (×10) (OR = 1.58, = 0.007). The nomogram exhibited an area under the receiver operating characteristic curve of 0.890 (95% CI 0.830-0.949). : Our study demonstrated that patients with UROP who have DM, higher SI, higher NLR, and elevated CRP levels are significantly more likely to develop sepsis. These insights may aid in risk stratification, and it is imperative that clinicians promptly initiate treatment for those identified as high risk.

摘要

患有与尿石症相关的梗阻性肾盂肾炎(UROP)的患者,脓毒症是一种严重且令人担忧的并发症,会显著增加死亡率。本研究旨在确定 UROP 患者发生脓毒症的危险因素,并建立预测列线图模型。

我们分析了 2016 年 1 月 1 日至 2021 年 12 月 31 日期间入住长庚纪念医院且符合 UROP 标准的 148 名患者的数据。评估的主要结局是根据最近的脓毒症 3 指南定义的脓毒症发生率。为了确定脓毒症的潜在危险因素,我们采用最小绝对收缩和选择算子(LASSO)回归技术。随后,我们使用多变量逻辑回归构建预测模型。

共有 102 例非脓毒症病例和 46 例脓毒症病例。多变量分析中脓毒症的危险因素包括糖尿病史(DM)(OR=4.24,P=0.007)、休克指数(SI)(×10)(OR=1.55,P<0.001)、C 反应蛋白(CRP)(mg/dL)(OR=1.08,P=0.005)和中性粒细胞与淋巴细胞比值(NLR)(×10)(OR=1.58,P=0.007)。列线图的受试者工作特征曲线下面积为 0.890(95%CI 0.830-0.949)。

本研究表明,患有 DM、更高的 SI、更高的 NLR 和 CRP 水平的 UROP 患者发生脓毒症的风险显著增加。这些发现可能有助于风险分层,临床医生必须及时对被确定为高风险的患者进行治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32bc/11279065/3a10cebc1c3b/medicina-60-01113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验