Boni Gilles, Placet Vincent, Grimaldi Marina, Balaguer Patrick, Pourchet Sylvie
Institut de Chimie Moléculaire Université de Bourgogne (ICMUB), UMR 6302, 21000 Dijon, France.
Institut FEMTO-ST, CNRS, Université de Franche-Comté, 25000 Besançon, France.
Polymers (Basel). 2024 Jul 13;16(14):2010. doi: 10.3390/polym16142010.
This study describes the production of a new biobased epoxy thermoset and its use with long hemp fibres to produce high-performance composites that are totally biobased. The synthesis of BioIgenox, an epoxy resin derived from a lignin biorefinery, and its curing process have been optimised to decrease their environmental impact. The main objective of this study is to characterise the rheology and kinetics of the epoxy system with a view to optimising the composite manufacturing process. Thus, the epoxy resin/hardener system was chosen considering the constraints imposed by the implementation of composites reinforced with plant fibres. The viscosity of the chosen mixture shows the compatibility of the formulation with the traditional implementation processes of the composites. In addition, unlike BPA-a precursor of diglycidyl ether of bisphenol A (DGEBA) epoxy resin-BioIgenox and its precursor do not have endocrine disrupting activities. The neat polymer and its unidirectional hemp fibre composite are characterised using three-point bending tests. Results measured for the fully biobased epoxy polymer show a bending modulus, a bending strength, a maximum strain at failure and a T of, respectively, 3.1 GPa, 55 MPa, 1.82% and 120 °C. These values are slightly weaker than those of the DGEBA-based epoxy material. It was also observed that the incorporation of fibres into the fully biobased epoxy system induces a decrease in the damping peak and a shift towards higher temperatures. These results point out the effective stress transfers between the hemp fibres and the fully biobased epoxy system. The high mechanical properties and softening temperature measured in this work with a fully biobased epoxy system make this type of composite a very promising sustainable material for transport and lightweight engineering applications.
本研究描述了一种新型生物基环氧热固性材料的制备及其与长麻纤维的结合使用,以生产完全基于生物基的高性能复合材料。源自木质素生物精炼厂的环氧树脂BioIgenox的合成及其固化过程已得到优化,以降低其对环境的影响。本研究的主要目的是表征环氧体系的流变学和动力学,以优化复合材料制造工艺。因此,考虑到植物纤维增强复合材料实施过程中的限制因素,选择了环氧树脂/固化剂体系。所选混合物的粘度表明该配方与复合材料的传统实施工艺具有兼容性。此外,与双酚A二缩水甘油醚(DGEBA)环氧树脂的前体双酚A不同,BioIgenox及其前体没有内分泌干扰活性。使用三点弯曲试验对纯聚合物及其单向麻纤维复合材料进行了表征。对完全生物基环氧聚合物测得的结果显示,其弯曲模量、弯曲强度、破坏时的最大应变和玻璃化转变温度分别为3.1 GPa、55 MPa、1.82%和120℃。这些值略低于基于DGEBA的环氧材料。还观察到,将纤维加入完全生物基环氧体系中会导致阻尼峰降低并向更高温度偏移。这些结果表明麻纤维与完全生物基环氧体系之间存在有效的应力传递。在本研究中使用完全生物基环氧体系测得的高机械性能和软化温度,使这种类型的复合材料成为用于运输和轻质工程应用的非常有前景的可持续材料。