Shi Shenbao, Liang Hui, Huang Qinhong, Sun Xinlin
Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
World Neurosurg. 2024 Nov;191:e20-e31. doi: 10.1016/j.wneu.2024.07.147. Epub 2024 Jul 26.
The prognosis of patients with recurrent low-grade glioma (rLGG) varies greatly. Some patients can survive >10 years after recurrence, whereas other patients have <1 year of survival.
To identify the related risk factors affecting the prognosis of patients with rLGG, we performed a series of bioinformatics analyses on RNA sequencing data of rLGG based on the Chinese Glioma Genome Altas database.
We constructed a 12-gene prognostic signature, dividing all the patients with rLGG into high- and low-risk subgroups. The result showed an excellent predictive effect in both the training cohort and the validation cohort using LASSO-Cox regression. Moreover, multivariate Cox analysis identified 4 independent prognostic factors of rLGG; among them, ZCWPW1 is identified as a high-value protective factor.
In all, this prognostic model displayed robust predictive capability for the overall survival of patients with rLGG, providing a new monitoring method for rLGG. The 4 independent prognostic factors, especially ZCWPW1, can be potential targets for rLGG, bringing new possibilities for the treatment of patients with rLGG.
复发性低级别胶质瘤(rLGG)患者的预后差异很大。一些患者复发后能存活超过10年,而其他患者的生存期则不到1年。
为了确定影响rLGG患者预后的相关危险因素,我们基于中国胶质瘤基因组图谱数据库对rLGG的RNA测序数据进行了一系列生物信息学分析。
我们构建了一个12基因的预后特征,将所有rLGG患者分为高风险和低风险亚组。结果显示,使用LASSO-Cox回归在训练队列和验证队列中均具有出色的预测效果。此外,多变量Cox分析确定了rLGG的4个独立预后因素;其中,ZCWPW1被确定为一个高价值的保护因素。
总体而言,该预后模型对rLGG患者的总生存期显示出强大的预测能力,为rLGG提供了一种新的监测方法。这4个独立预后因素,尤其是ZCWPW1,可能成为rLGG的潜在治疗靶点,为rLGG患者的治疗带来新的可能性。