Suppr超能文献

一种用于评估滋养层细胞分化的定量图像分析平台。

A quantitative image analysis platform for assessing trophoblast differentiation.

作者信息

Jabeen Mahe, Karakis Victoria, Britt John, Miguel Adriana San, Rao Balaji

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.

Genetics Program, North Carolina State University, Raleigh, NC, 27695, USA.

出版信息

Placenta. 2025 Jun 13;166:117-125. doi: 10.1016/j.placenta.2024.07.009. Epub 2024 Jul 18.

Abstract

Immunofluorescence microscopy is extensively used in characterization of trophoblast differentiation in vitro. However, such data is primarily used to confirm the presence of protein markers or qualitatively compare levels of protein markers across experimental conditions. Imaging data, when processed and analyzed appropriately can provide quantitative and spatial information, and provide biological insight. Towards this end, here we present MATroph, an open-source MATLAB-based computational tool to process images generated by immunofluorescent microscopy. MATroph automatically executes a series of image processing operations, including the classification of red, blue, and green channels from images, background extraction, morphological operations, and image filtering. From the isolated blue channels corresponding to nuclear staining, this tool generates numerical values for cell number. Additionally, relative levels and spatial location of proteins are obtained by mapping red and green channel pixels to blue pixels by assigning minimum pixel distance between the blue and other color objects. Thus, this tool provides information about intracellular protein accumulation areas. Additionally, this tool can also classify cells as single cells or part of colonies, and extract information on protein levels for each; this is particularly useful for quantitative studies on extravillous trophoblast maturation. We provide a user-guide to analyze the relative levels of markers relevant to human trophoblast stem cell self-renewal and differentiation. Importantly, MATroph is composed of a simple MATLAB algorithm, and its implementation requires minimal expertise in programming.

摘要

免疫荧光显微镜技术被广泛应用于体外滋养层细胞分化的表征。然而,此类数据主要用于确认蛋白质标志物的存在,或在不同实验条件下对蛋白质标志物水平进行定性比较。经过适当处理和分析的成像数据可以提供定量和空间信息,并提供生物学见解。为此,我们在此介绍MATroph,这是一种基于MATLAB的开源计算工具,用于处理免疫荧光显微镜生成的图像。MATroph会自动执行一系列图像处理操作,包括对图像中的红色、蓝色和绿色通道进行分类、背景提取、形态学操作和图像滤波。该工具从与细胞核染色对应的分离蓝色通道中生成细胞数量的数值。此外,通过将红色和绿色通道像素映射到蓝色像素,即通过指定蓝色与其他颜色物体之间的最小像素距离,可获得蛋白质的相对水平和空间位置。因此,该工具可提供有关细胞内蛋白质积累区域的信息。此外,该工具还可以将细胞分类为单细胞或集落的一部分,并提取每个细胞的蛋白质水平信息;这对于绒毛外滋养层细胞成熟的定量研究特别有用。我们提供了一份用户指南,用于分析与人类滋养层干细胞自我更新和分化相关的标志物的相对水平。重要的是,MATroph由一个简单的MATLAB算法组成,其实现所需的编程专业知识极少。

相似文献

3
Human embryonic stem cells as models for trophoblast differentiation.作为滋养层分化模型的人类胚胎干细胞
Placenta. 2008 Mar;29 Suppl A(Suppl A):S10-6. doi: 10.1016/j.placenta.2007.10.009. Epub 2007 Dec 3.
6
Notch1 controls development of the extravillous trophoblast lineage in the human placenta.Notch1调控人类胎盘绒毛外滋养层细胞谱系的发育。
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7710-E7719. doi: 10.1073/pnas.1612335113. Epub 2016 Nov 14.

引用本文的文献

本文引用的文献

1
Spatial multiomics map of trophoblast development in early pregnancy.妊娠早期滋养层发育的空间多组学图谱。
Nature. 2023 Apr;616(7955):143-151. doi: 10.1038/s41586-023-05869-0. Epub 2023 Mar 29.
7
Derivation of Human Trophoblast Stem Cells.人滋养层干细胞的来源。
Cell Stem Cell. 2018 Jan 4;22(1):50-63.e6. doi: 10.1016/j.stem.2017.11.004. Epub 2017 Dec 14.
8
Notch1 controls development of the extravillous trophoblast lineage in the human placenta.Notch1调控人类胎盘绒毛外滋养层细胞谱系的发育。
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7710-E7719. doi: 10.1073/pnas.1612335113. Epub 2016 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验