Suppr超能文献

量子力学计算阐明了皮肤致敏性药物化合物。

Quantum-Mechanics Calculations Elucidate Skin-Sensitizing Pharmaceutical Compounds.

机构信息

Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States.

The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States.

出版信息

Chem Res Toxicol. 2024 Aug 19;37(8):1404-1414. doi: 10.1021/acs.chemrestox.4c00185. Epub 2024 Jul 28.

Abstract

Skin sensitization is a critical end point in occupational toxicology that necessitates the use of fast, accurate, and affordable models to aid in establishing handling guidance for worker protection. While many in silico models have been developed, the scarcity of reliable data for active pharmaceutical ingredients (APIs) and their intermediates (together regarded as pharmaceutical compounds) brings into question the reliability of these tools, which are largely constructed using publicly available nonspecialty chemicals. Here, we present the quantum-mechanical (QM) Computer-Aided Discovery and REdesign (CADRE) model, which was developed with the bioactive and structurally complex chemical space in mind by relying on the fundamentals of chemical interactions in key events (versus structural attributes of training-set data). Validated in this study on 345 APIs and intermediates, CADRE achieved 95% accuracy, sensitivity, and specificity and a combined 79% accuracy in assigning potency categories compared to the mouse local lymph node assay data. We show how historical outcomes from CADRE testing in the pharmaceutical space, generated over the past 10 years on ca. 2500 chemicals, can be used to probe the relationships between sensitization mechanisms (or the underlying chemical classes) and the probability of eliciting a sensitization response in mice of a given potency. We believe this information to be of value to both practitioners, who can use it to quickly screen and triage their data sets, as well as to model developers to fine-tune their structure-based tools. Lastly, we leverage our experimentally validated subset of APIs and intermediates to show the importance of dermal permeability on the sensitization potential and potency. We demonstrate that common physicochemical properties used to assess permeation, such as the octanol-water partition coefficient and molecular weight, are poor proxies for the more accurate energy-pair distributions that can be computed from mixed QM and classical simulations using model representations of the .

摘要

皮肤致敏是职业毒理学的一个关键终点,需要使用快速、准确和经济实惠的模型来帮助制定工人保护的处理指南。虽然已经开发了许多计算模型,但活性药物成分 (API) 及其中间体(统称为药物化合物)的可靠数据稀缺,这使得这些工具的可靠性受到质疑,这些工具主要是使用公开的非专业化学品构建的。在这里,我们提出了量子力学(QM)计算机辅助发现和重新设计(CADRE)模型,该模型的开发考虑了生物活性和结构复杂的化学空间,依赖于关键事件中化学相互作用的基本原理(而不是训练集数据的结构属性)。在这项研究中,对 345 个 API 和中间体进行了验证,CADRE 的准确率、灵敏度和特异性达到 95%,与小鼠局部淋巴结试验数据相比,在分配效力类别方面的准确率为 79%。我们展示了如何利用过去 10 年在大约 2500 种化学品上在药物领域进行的 CADRE 测试的历史结果,来探究致敏机制(或潜在的化学类别)与给定效力的小鼠中引发致敏反应的概率之间的关系。我们相信这些信息对从业者和模型开发者都有价值,从业者可以使用它快速筛选和分类他们的数据集,而模型开发者可以微调他们的基于结构的工具。最后,我们利用我们经过实验验证的 API 和中间体子集来展示皮肤通透性对致敏潜力和效力的重要性。我们证明了用于评估渗透的常见物理化学性质,如辛醇-水分配系数和分子量,是更准确的能量对分布的糟糕替代品,这些能量对分布可以通过使用模型表示的混合 QM 和经典模拟来计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验