Suppr超能文献

使用量子力学计算预测局部淋巴结转移试验中迈克尔受体的皮肤致敏潜力。

Predicting skin sensitization potency for Michael acceptors in the LLNA using quantum mechanics calculations.

作者信息

Enoch S J, Roberts D W

机构信息

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool, England L3 3AF.

出版信息

Chem Res Toxicol. 2013 May 20;26(5):767-74. doi: 10.1021/tx4000655. Epub 2013 Apr 23.

Abstract

This study outlines the development of a series of quantitative mechanistic models enabling skin sensitization potency in the LLNA to be predicted for direct acting Michael acceptors. These models utilized several computational descriptors based on knowledge of the Michael addition reaction mechanism. The key descriptor was calculated using density functional theory and modeled the stability of the reaction intermediate. A second descriptor relating to the available surface area at the site of the reaction was also found to be important. Several poorly predicted compounds were identified, and in all cases, these could be rationalized mechanistically. The analysis of these compounds allowed a well-defined mechanistically driven applicability domain to be developed. The study showed that in silico quantitative mechanistic models, with a well-defined applicability domain, can be used to predict skin sensitization potency in the LLNA. The approach presented has the potential to be of use as part of a weight of evidence approach for predicting skin sensitization without the use of animals in risk assessment.

摘要

本研究概述了一系列定量机理模型的开发,这些模型能够预测直接作用的迈克尔受体在局部淋巴结转移试验(LLNA)中的皮肤致敏效力。这些模型基于迈克尔加成反应机理的知识,利用了几个计算描述符。关键描述符是使用密度泛函理论计算得出的,用于模拟反应中间体的稳定性。还发现与反应位点处可用表面积相关的第二个描述符也很重要。识别出了几种预测效果不佳的化合物,在所有情况下,都可以从机理上进行合理说明。对这些化合物的分析使得能够开发出一个明确的、由机理驱动的适用范围。该研究表明,具有明确适用范围的计算机模拟定量机理模型可用于预测LLNA中的皮肤致敏效力。所提出的方法有可能作为证据权重方法的一部分,用于在风险评估中不使用动物的情况下预测皮肤致敏性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验