Suppr超能文献

采用导电供体-受体共价有机框架工程化空穴传输层用于稳定高效的钙钛矿太阳能电池

Engineering the Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cells.

作者信息

Wang Shihuai, Wu Tai, Guo Jingjing, Zhao Rongjun, Hua Yong, Zhao Yanli

机构信息

Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China.

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.

出版信息

ACS Cent Sci. 2024 Jun 14;10(7):1383-1395. doi: 10.1021/acscentsci.4c00416. eCollection 2024 Jul 24.

Abstract

Spiro-OMeTAD doped with lithium-bis(trifluoromethylsulfonyl)-imide (Li-TFSI) and butyl-pyridine (-BP) is widely used as a hole transport layer (HTL) in n-i-p perovskite solar cells (PSCs). Spiro-OMeTAD based PSCs typically show poor stability owing to the agglomeration of Li-TFSI, the migration of lithium ions (Li), and the existence of potential mobile defects originating from the perovskite layer. Thus, it is necessary to search for a strategy that suppresses the degradation of PSCs and overcomes the Shockley Queisser efficiency limit via harvesting excess energy from hot charge carrier. Herein, two covalent organic frameworks (COFs) including BPTA-TAPD-COF and a well-defined donor-acceptor COF (BPTA-TAPD-COF@TCNQ) were developed and incorporated into Spiro-OMeTAD HTL. BPTA-TAPD-COF and BPTA-TAPD-COF@TCNQ could act as multifunctional additives of Spiro-OMeTAD HTL, which improve the photovoltaic performance and stability of the PSC device by accelerating charge-carrier extraction, suppressing the Li migration and Li-TFSI agglomeration, and capturing mobile defects. Benefiting from the increased conductivity, the addition of BPTA-TAPD-COF@TCNQ in the device led to the highest power conversion efficiency of 24.68% with long-term stability in harsh conditions. This work provides an example of using COFs as additives of HTL to enable improvements of both efficiency and stability for PSCs.

摘要

掺杂有双(三氟甲基磺酰基)亚胺锂(Li-TFSI)和丁基吡啶(-BP)的螺环-OMeTAD被广泛用作n-i-p钙钛矿太阳能电池(PSC)中的空穴传输层(HTL)。基于螺环-OMeTAD的PSC通常表现出较差的稳定性,这是由于Li-TFSI的团聚、锂离子(Li)的迁移以及源自钙钛矿层的潜在可移动缺陷的存在。因此,有必要寻找一种策略来抑制PSC的降解,并通过从热载流子中收集多余能量来克服肖克利-奎塞尔效率极限。在此,开发了两种共价有机框架(COF),包括BPTA-TAPD-COF和一种明确的供体-受体COF(BPTA-TAPD-COF@TCNQ),并将其纳入螺环-OMeTAD HTL中。BPTA-TAPD-COF和BPTA-TAPD-COF@TCNQ可以作为螺环-OMeTAD HTL的多功能添加剂,通过加速电荷载流子提取、抑制Li迁移和Li-TFSI团聚以及捕获可移动缺陷来提高PSC器件的光伏性能和稳定性。受益于电导率的提高,在器件中添加BPTA-TAPD-COF@TCNQ导致最高功率转换效率达到24.68%,并在恶劣条件下具有长期稳定性。这项工作提供了一个使用COF作为HTL添加剂以提高PSC效率和稳定性的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e69d/11273455/f4adc80ea6cd/oc4c00416_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验