Jin Michelle, Ogundare Simon O, Lanio Marcos, Sorid Sophia, Whye Alicia R, Santos Sofia Leal, Franceschini Alessandra, Denny Christine A
Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA.
Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, 10027, USA.
bioRxiv. 2025 Feb 19:2024.07.12.603299. doi: 10.1101/2024.07.12.603299.
In the last decade, activity-dependent strategies for labelling multiple immediate early gene (IEG) ensembles in mice have generated unprecedented insight into the mechanisms of memory encoding, storage, and retrieval. However, few strategies exist for brain-wide mapping of multiple ensembles, including their overlapping population, and none incorporate capabilities for downstream network analysis. Here, we introduce a scalable workflow to analyze traditionally coronally-sectioned datasets produced by activity-dependent tagging systems. Intrinsic to this pipeline is imple ulti-ensemble tlas egistration and satistical esting in (), an R package which wraps mapping capabilities with functions for statistical analysis and network visualization, and support for import of external datasets. We demonstrate the versatility of SMARTTR by mapping the ensembles underlying the acquisition and expression of learned helplessness (LH), a robust stress model. Applying network analysis, we find that exposure to inescapable shock (IS), compared to context training (CT), results in decreased centrality of regions engaged in spatial and contextual processing and higher influence of regions involved in somatosensory and affective processing. During LH expression, the substantia nigra emerges as a highly influential region which shows a functional reversal following IS, indicating a possible regulatory function of motor activity during helplessness. We also report that IS results in a robust decrease in reactivation activity across a number of cortical, hippocampal, and amygdalar regions, indicating suppression of ensemble reactivation may be a neurobiological signature of LH. These results highlight the emergent insights uniquely garnered by applying our analysis approach to multiple ensemble datasets and demonstrate the strength of our workflow as a hypothesis-generating toolkit.
在过去十年中,用于标记小鼠多个即刻早期基因(IEG)集合的活动依赖策略,为记忆编码、存储和检索机制带来了前所未有的深入了解。然而,用于全脑多个集合映射的策略很少,包括它们的重叠群体,并且没有一个策略具备下游网络分析的能力。在这里,我们引入了一种可扩展的工作流程,用于分析由活动依赖标记系统产生的传统冠状切片数据集。该流程的核心是在R包()中进行简单的多集合图谱配准和统计测试,该包将映射功能与统计分析和网络可视化功能相结合,并支持导入外部数据集。我们通过绘制习得性无助(LH)(一种强大的应激模型)的获取和表达背后的集合,展示了SMARTTR的多功能性。应用网络分析,我们发现与情境训练(CT)相比,暴露于不可逃避的电击(IS)会导致参与空间和情境处理的区域的中心性降低,以及参与体感和情感处理的区域的影响增加。在LH表达期间,黑质成为一个具有高度影响力的区域,在IS后显示出功能逆转,表明无助期间运动活动可能具有调节功能。我们还报告说,IS导致多个皮质、海马和杏仁核区域的再激活活动显著减少,表明集合再激活的抑制可能是LH的神经生物学特征。这些结果突出了通过将我们的分析方法应用于多个集合数据集而独特获得的新见解,并证明了我们的工作流程作为一个假设生成工具包的优势。