Suppr超能文献

改进的STNNet,一种使用无人机进行人群检测、跟踪和计数的基准。

Improved STNNet, A benchmark for detection, tracking, and counting crowds using Drones.

作者信息

Nazeer Mohd, Sharma Kanhaiya, Sathappan S, Srilatha Pulipati, Mohammed Arshad Ahmad Khan

机构信息

Vidya Jyothi Institute of Technology, Hyderabad, 500075, India.

Symbiosis Institute of Technology Pune, Symbiosis International (Deemed) University, Pune, 411021, India.

出版信息

MethodsX. 2024 Jun 25;13:102820. doi: 10.1016/j.mex.2024.102820. eCollection 2024 Dec.

Abstract

In computer vision, navigating multi-object tracking in crowded scenes poses a fundamental challenge with broad applications ranging from surveillance systems to autonomous vehicles. Traditional tracking methods encounter difficulties associating noisy object detections and maintaining consistent labels across frames, particularly in scenarios like video surveillance for crowd control and public safety. This paper introduces 'Improved Space-Time Neighbor-Aware Network (STNNet),' an advanced framework for online Multi-Object Tracking (MOT) designed to address these challenges. Expanding upon the foundational STNNet architecture, our enhanced model incorporates deep reinforcement learning techniques to refine decision-making. By framing the online MOT problem as a Markov Decision Process (MDP), Improved STNNet learns a sophisticated policy for data association, adeptly handling complexities such as object birth/death and appearance/disappearance as state transitions within the MDP. Through extensive experimentation on benchmark datasets, including the MOT Challenge, our proposed Improved STNNet demonstrates superior performance, surpassing existing methods in demanding, crowded scenarios. This study showcases the effectiveness of our approach and lays the groundwork for advancing real-time video analysis applications, particularly in dynamic, crowded environments. Additionally, we utilize the dataset provided by STNNET for density map estimation, forming the basis for our research.•Develop an advanced framework for online Multi-Object Tracking (MOT) to address crowded scene challenges, particularly improving object association and label consistency across frames.•Explore integrating Deep Reinforcement learning techniques into the MOT framework, framing the problem as an MDP to refine decision-making and handle complexities such as object birth or death and appearance or disappearance transitions.

摘要

在计算机视觉中,在拥挤场景中进行多目标跟踪是一项基本挑战,其应用范围广泛,涵盖从监控系统到自动驾驶车辆等领域。传统的跟踪方法在关联有噪声的目标检测以及在各帧之间保持一致的标签方面遇到困难,尤其是在诸如用于人群控制和公共安全的视频监控等场景中。本文介绍了“改进的时空邻域感知网络(STNNet)”,这是一种用于在线多目标跟踪(MOT)的先进框架,旨在应对这些挑战。在基础的STNNet架构之上进行扩展,我们增强后的模型融入了深度强化学习技术以优化决策。通过将在线MOT问题构建为马尔可夫决策过程(MDP),改进后的STNNet学习到一种用于数据关联的复杂策略,能够巧妙地处理诸如目标出生/死亡以及外观/消失等复杂情况,将其作为MDP中的状态转换来处理。通过在包括MOT挑战赛在内的基准数据集上进行广泛实验,我们提出的改进后的STNNet展现出卓越的性能,在要求苛刻的拥挤场景中超越了现有方法。这项研究展示了我们方法的有效性,并为推进实时视频分析应用奠定了基础,特别是在动态、拥挤的环境中。此外,我们利用STNNET提供的数据集进行密度图估计,形成我们研究的基础。

•开发一种用于在线多目标跟踪(MOT)的先进框架,以应对拥挤场景挑战,特别是改善目标关联以及各帧之间的标签一致性。

•探索将深度强化学习技术集成到MOT框架中,将问题构建为MDP以优化决策并处理诸如目标出生或死亡以及外观或消失转换等复杂情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca86/11278589/a60ecd787cee/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验