Suppr超能文献

实体瘤内的多细胞免疫生态型可预测免疫检查点抑制剂在现实世界中的治疗益处。

Multicellular immune ecotypes within solid tumors predict real-world therapeutic benefits with immune checkpoint inhibitors.

作者信息

Wang Xuefeng, Li Tingyi, Eljilany Islam, Sukrithan Vineeth, Ratan Aakrosh, McCarter Martin, Carpten John, Colman Howard, Ikeguchi Alexandra P, Puzanov Igor, Arnold Susanne, Churchman Michelle, Hwu Patrick, Rodriguez Paulo C, Dalton William S, Weiner George J, Tarhini Ahmad A

机构信息

Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.

Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.

出版信息

medRxiv. 2024 Jul 21:2024.07.19.24310726. doi: 10.1101/2024.07.19.24310726.

Abstract

BACKGROUND

Cancer initiation, progression, and immune evasion depend on the tumor microenvironment (TME). Thus, understanding the TME immune architecture is essential for understanding tumor metastasis and therapy response. This study aimed to create an immune cell states (CSs) atlas using bulk RNA-seq data enriched by eco-type analyses to resolve the complex immune architectures in the TME.

METHODS

We employed EcoTyper, a machine-learning (ML) framework, to study the real-world prognostic significance of immune CSs and multicellular ecosystems, utilizing molecular data from 1,610 patients with multiple malignancies who underwent immune checkpoint inhibitor (ICI) therapy within the ORIEN Avatar cohort, a well-annotated real-world dataset.

RESULTS

Our analysis revealed consistent ICI-specific prognostic TME carcinoma ecotypes (CEs) (including CE1, CE9, CE10) across our pan-cancer dataset, where CE1 being more lymphocyte-deficient and CE10 being more proinflammatory. Also, the analysis of specific immune CSs across different cancers showed consistent CD8+ and CD4+ T cell CS distribution patterns. Furthermore, survival analysis of the ORIEN ICI cohort demonstrated that ecotype CE9 is associated with the most favorable survival outcomes, while CE2 is linked to the least favorable outcomes. Notably, the melanoma-specific prognostic EcoTyper model confirmed that lower predicted risk scores are associated with improved survival and better response to immunotherapy. Finally, de novo discovery of ecotypes in the ORIEN ICI dataset identified Ecotype E3 as significantly associated with poorer survival outcomes.

CONCLUSION

Our findings offer important insights into refining the patient selection process for immunotherapy in real-world practice and guiding the creation of novel therapeutic strategies to target specific ecotypes within the TME.

摘要

背景

癌症的起始、进展和免疫逃逸依赖于肿瘤微环境(TME)。因此,了解TME免疫结构对于理解肿瘤转移和治疗反应至关重要。本研究旨在利用通过生态型分析富集的批量RNA测序数据创建免疫细胞状态(CSs)图谱,以解析TME中复杂的免疫结构。

方法

我们采用机器学习(ML)框架EcoTyper,利用来自1610例接受免疫检查点抑制剂(ICI)治疗的多种恶性肿瘤患者的分子数据,研究免疫CSs和多细胞生态系统在现实世界中的预后意义,该数据集来自注释良好的现实世界数据集ORIEN Avatar队列。

结果

我们的分析揭示了跨泛癌数据集一致的ICI特异性预后TME癌生态型(CEs)(包括CE1、CE9、CE10),其中CE1淋巴细胞缺乏程度更高,CE10促炎程度更高。此外,对不同癌症中特定免疫CSs的分析显示了一致的CD8 +和CD4 + T细胞CS分布模式。此外,ORIEN ICI队列的生存分析表明,生态型CE9与最有利的生存结果相关,而CE2与最不利的结果相关。值得注意的是,黑色素瘤特异性预后EcoTyper模型证实,较低的预测风险评分与改善的生存和更好的免疫治疗反应相关。最后,在ORIEN ICI数据集中从头发现生态型,确定生态型E3与较差的生存结果显著相关。

结论

我们的研究结果为在现实世界实践中优化免疫治疗的患者选择过程以及指导制定针对TME中特定生态型的新型治疗策略提供了重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验