Koch Elise, Jurgenson Tuuli, Einarsson Gudmundur, Mitchell Brittany, Harder Arvid, Garcia-Marin Luis M, Krebs Kristi, Lin Yuhao, Xiong Ying, Research Team Estonian Biobank, Lu Yi, Hagg Sara, Renteria Miguel E, Medland Sarah E, Wray Naomi R, Martin Nicholas G, Huebel Christopher, Breen Gerome, Thorgeirsson Thorgeir, Stefansson Hreinn, Stefansson Kari, Milani Lili, Andreassen Ole A, O'Connell Kevin S
medRxiv. 2024 Jul 15:2024.07.13.24310361. doi: 10.1101/2024.07.13.24310361.
Antidepressants exhibit a considerable variation in efficacy, and increasing evidence suggests that individual genetics contribute to antidepressant treatment response. Here, we combined data on antidepressant non-response measured using rating scales for depressive symptoms, questionnaires of treatment effect, and data from electronic health records, to increase statistical power to detect genomic loci associated with non-response to antidepressants in a total sample of 135,471 individuals prescribed antidepressants. We performed genome-wide association meta-analyses, leave-one-out polygenic prediction, and bioinformatics analyses for genetically informed drug prioritization. We identified two novel loci associated with non-response to antidepressants and showed significant polygenic prediction in independent samples. In addition, we investigated drugs that target proteins likely involved in mechanisms underlying antidepressant non-response, and shortlisted drugs that warrant further replication and validation of their potential to reduce depressive symptoms in individuals who do not respond to first-line antidepressant medications. These results suggest that meta-analyses of GWAS utilizing real-world measures of treatment outcomes can increase sample sizes to improve the discovery of variants associated with non-response to antidepressants.
抗抑郁药的疗效存在相当大的差异,越来越多的证据表明个体基因会影响抗抑郁治疗的反应。在此,我们整合了使用抑郁症状评定量表、治疗效果问卷测得的抗抑郁药无反应数据以及电子健康记录数据,以增强统计效力,从而在总共135471名服用抗抑郁药的个体样本中检测与抗抑郁药无反应相关的基因组位点。我们进行了全基因组关联荟萃分析、留一法多基因预测以及生物信息学分析,以进行基于遗传信息的药物优先级排序。我们鉴定出两个与抗抑郁药无反应相关的新位点,并在独立样本中显示出显著的多基因预测。此外,我们研究了靶向可能参与抗抑郁药无反应潜在机制的蛋白质的药物,并筛选出了一些药物,这些药物有待进一步重复验证其减轻对一线抗抑郁药物无反应个体抑郁症状的潜力。这些结果表明,利用治疗结果的真实世界测量进行全基因组关联研究的荟萃分析可以增加样本量,以改进与抗抑郁药无反应相关变异的发现。