Wu Linsong, Shi Haoran, Wang Xingzhi, Lu Shiwei, Chen Xiang
State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China.
School of Urban Construction, Yangtze University, Jingzhou 434023, China.
ACS Omega. 2024 Jul 12;9(29):31455-31463. doi: 10.1021/acsomega.4c00913. eCollection 2024 Jul 23.
In this study, a series of nano-TiO composite materials, including nano-TiO, nano-SnO/TiO, nano-SiO/TiO, and nano-FeO/TiO, were successfully synthesized via the gaseous detonation method. Comprehensive characterization of the synthesized samples was carried out through X-ray diffraction (XRD), transmission electron microscopy/high-resolution TEM (TEM/HRTEM), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), Brunauer-Emmett-Teller (BET) method, and Fourier transform infrared (FTIR) analysis, which unveiled the significant influence of precursor types on the microstructure of the composite materials. Specifically, the incorporation of Sn promoted the transformation of TiO to the rutile phase, reducing particle sizes from 25 to 19 nm and increasing the specific surface area from 44 to 86 m/g. In contrast, the introduction of SiO impeded the rutile phase formation, leading to a marked reduction in particle size to 14 nm and an enhancement of the specific surface area to 104 m/g. Furthermore, the presence of Fe promoted the formation of the rutile phase and enabled particle growth to 44 nm. These findings not only deepen the understanding of structural control in the synthesis of nano-TiO composite materials via the gaseous detonation method but also highlight the critical role of precursor selection in determining the properties of the resulting materials.
在本研究中,通过气相爆轰法成功合成了一系列纳米TiO复合材料,包括纳米TiO、纳米SnO/TiO、纳米SiO/TiO和纳米FeO/TiO。通过X射线衍射(XRD)、透射电子显微镜/高分辨率透射电子显微镜(TEM/HRTEM)、扫描电子显微镜/能量色散X射线光谱(SEM/EDS)、布鲁诺尔-埃米特-泰勒(BET)法和傅里叶变换红外(FTIR)分析对合成样品进行了全面表征,揭示了前驱体类型对复合材料微观结构的显著影响。具体而言,Sn的掺入促进了TiO向金红石相的转变,粒径从25 nm减小到19 nm,比表面积从44 m²/g增加到86 m²/g。相反,SiO的引入阻碍了金红石相的形成,导致粒径显著减小至14 nm,比表面积增大至104 m²/g。此外,Fe的存在促进了金红石相的形成,并使颗粒生长至44 nm。这些发现不仅加深了对通过气相爆轰法合成纳米TiO复合材料时结构控制的理解,还突出了前驱体选择在决定所得材料性能方面的关键作用。