Suppr超能文献

基于网络药理学和分子对接技术探索健脾益胃方治疗胃癌的分子机制

Network pharmacology- and molecular docking-based exploration of the molecular mechanism underlying Jianpi Yiwei Recipe treatment of gastric cancer.

作者信息

Chen Peng, Wu Huan-Yu

机构信息

Traditional Chinese Medicine, The First Teaching Hospital of Tianjin University, Tianjin 300193, China.

出版信息

World J Gastrointest Oncol. 2024 Jul 15;16(7):2988-2998. doi: 10.4251/wjgo.v16.i7.2988.

Abstract

BACKGROUND

Traditional Chinese medicine (TCM) is widely used as an important complementary and alternative healthcare system for cancer treatment in Asian countries. Network pharmacology, which utilizes various database platforms and computer software to study the interactions between complex drug components in vivo, is particularly useful for studying the pharmacodynamic mechanisms of multi-pathway and multi-target Chinese medicines.

AIM

To explore the potential targets and function of Jianpi Yiwei Recipe treatment of gastric cancer (GC) through network pharmacology and molecular docking.

METHODS

Data on the components of Jianpi Yiwei Recipe (Radix Astragali, Radix Codonopsis, , Koidz., , stir-baked rhizoma dioscoreae, Lour., fried Fructus Aurantii, pericarpium citri reticulatae, Rhizoma Pinelliae Preparata, and Radix Glycyrrhizae Preparata) were collected and screened by using the TCM systems pharmacology database and analysis platform (TCMSP). Then the targets of these compounds were predicted. GC-related targets were screened using the GeneCards database. Venn diagram was used to identify common targets. An active ingredient-core target interaction network and a protein-protein interaction (PPI) network were built. Moreover, we performed gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on the core targets and validated them by molecular docking.

RESULTS

TCMSP screening revealed 11 active components and 184 targets, whereas GeneCards found 10118 disease-related targets, with 180 shared targets between them. Topology analysis of the PPI network identified 38 targets, including ATK1, TP53, and tumor necrosis factor, as key targets for the treatment of GC by Jianpi Yiwei Recipe. Quercetin, naringenin, luteolin, , may be the main active components of Jianpi Yiwei Recipe. GO enrichment analysis identified 2809, 1218, and 553 functions related to biological process, molecular function, and cellular component, respectively. KEGG pathway enrichment analysis revealed 167 related pathways, mainly involved in cancer, endocrine resistance, and AGE-RAGE signaling in diabetic complication. Validation with molecular docking analysis showed docking of key active components with core targets.

CONCLUSION

Jianpi Yiwei Recipe plays a therapeutic role in GC through multiple components, targets, and pathways. These findings form a basis for follow-up exploration of Jianpi Yiwei Recipe in the treatment of GC.

摘要

背景

在亚洲国家,传统中医(TCM)作为一种重要的癌症治疗补充和替代医疗体系被广泛应用。网络药理学利用各种数据库平台和计算机软件来研究体内复杂药物成分之间的相互作用,对于研究多途径、多靶点中药的药效机制尤为有用。

目的

通过网络药理学和分子对接,探索健脾益胃方治疗胃癌(GC)的潜在靶点和功能。

方法

收集健脾益胃方(黄芪、党参、麦冬、地黄、炒山药、茯苓、炒枳壳、陈皮、姜半夏、炙甘草)的成分数据,并使用中药系统药理学数据库及分析平台(TCMSP)进行筛选。然后预测这些化合物的靶点。使用GeneCards数据库筛选与GC相关的靶点。通过维恩图确定共同靶点。构建活性成分-核心靶点相互作用网络和蛋白质-蛋白质相互作用(PPI)网络。此外,我们对核心靶点进行基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)通路富集分析,并通过分子对接进行验证。

结果

TCMSP筛选出11种活性成分和184个靶点,而GeneCards发现10118个疾病相关靶点,两者之间有180个共同靶点。PPI网络的拓扑分析确定了38个靶点,包括ATK1、TP53和肿瘤坏死因子,作为健脾益胃方治疗GC的关键靶点。槲皮素、柚皮素、木犀草素等可能是健脾益胃方的主要活性成分。GO富集分析分别确定了与生物过程、分子功能和细胞成分相关的2809、1218和553项功能。KEGG通路富集分析揭示了167条相关通路,主要涉及癌症、内分泌抵抗和糖尿病并发症中的AGE-RAGE信号通路。分子对接分析验证表明关键活性成分与核心靶点对接。

结论

健脾益胃方通过多种成分、靶点和途径在GC治疗中发挥治疗作用。这些发现为健脾益胃方治疗GC的后续探索奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f5f/11271781/0a001c3c98f8/WJGO-16-2988-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验