Suppr超能文献

基于含芳香环氮配体的室温附近自旋转变的自旋交叉铁配合物:从分子设计到功能器件

Spin crossover iron complexes with spin transition near room temperature based on nitrogen ligands containing aromatic rings: from molecular design to functional devices.

作者信息

Zhang Yongjie, Torres-Cavanillas Ramón, Yan Xinxin, Zeng Yixun, Jiang Mengyun, Clemente-León Miguel, Coronado Eugenio, Shi Shengwei

机构信息

Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.

出版信息

Chem Soc Rev. 2024 Aug 27;53(17):8764-8789. doi: 10.1039/d3cs00688c.

Abstract

During last decades, significant advances have been made in iron-based spin crossover (SCO) complexes, with a particular emphasis on achieving reversible and reproducible thermal hysteresis at room temperature (RT). This pursuit represents a pivotal goal within the field of molecular magnetism, aiming to create molecular devices capable of operating in ambient conditions. Here, we summarize the recent progress of iron complexes with spin transition near RT based on nitrogen ligands containing aromatic rings from molecular design to functional devices. Specifically, we discuss the various factors, including supramolecular interactions, crystal packing, guest molecules and pressure effects, that could influence its cooperativity and the spin transition temperature. Furthermore, the most recent advances in their implementation as mechanical actuators, switching/memories, sensors, and other devices, have been introduced as well. Finally, we give a perspective on current challenges and future directions in SCO community.

摘要

在过去几十年中,铁基自旋交叉(SCO)配合物取得了重大进展,尤其侧重于在室温(RT)下实现可逆且可重复的热滞回现象。这一追求是分子磁学领域的一个关键目标,旨在制造能够在环境条件下运行的分子器件。在此,我们总结了基于含芳香环氮配体的铁配合物在接近室温时自旋转变方面的最新进展,从分子设计到功能器件。具体而言,我们讨论了各种因素,包括超分子相互作用、晶体堆积、客体分子和压力效应,这些因素可能会影响其协同性和自旋转变温度。此外,还介绍了它们在作为机械致动器、开关/存储器、传感器及其他器件方面的最新进展。最后,我们对SCO领域当前面临的挑战和未来方向给出了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验